如圖,在等腰梯形ABCD中,AC⊥BD,AC=6cm,則等腰梯形ABCD的面積為 cm2.
18【考點(diǎn)】等腰梯形的性質(zhì).菁優(yōu)網(wǎng)版權(quán)所有
【分析】通過(guò)作輔助線,把等腰梯形ABCD的面積轉(zhuǎn)化成直角三角形的面積來(lái)完成.
【解答】解:方法一:
過(guò)點(diǎn)B作BE∥AC,交DC的延長(zhǎng)線于點(diǎn)E,又AB∥CE,
∴四邊形ACEB是平行四邊形,又等腰梯形ABCD
∴BE=AC=DB=6cm,AB=CE,
∵AC⊥BD,
∴BE⊥BD,
∴△DBE是等腰直角三角形,
∴S等腰梯形ABCD=
==
=S△DBE=
=6×6÷2
=18(cm2).
方法二:
∵BD是△ADB和△CDB的公共底邊,又AC⊥BD,
∴AC=△ADB的高﹢△CDB的高,
∴梯形ABCD的面積=△ADB面積+△CDB面積=BD×AC=6×=18(cm2).
故答案為:18.
【點(diǎn)評(píng)】本題考查了梯形面積的計(jì)算,以及它的性質(zhì),還運(yùn)用了轉(zhuǎn)化的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
小明騎自行車上學(xué),開(kāi)始以正常速度勻速行駛,但行至中途時(shí),自行車出了故障,只好停下來(lái)修車,車修好后,因怕耽誤上課,他比修車前加快了速度繼續(xù)勻速行駛,下面是行駛路程s(m)關(guān)于時(shí)間t(min)的函數(shù)圖象,那么符合小明行駛情況的大致圖象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過(guò)第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說(shuō)明理由;
(3)若直線y2=2x+m經(jīng)過(guò)點(diǎn)B,且與該拋物線交于另一點(diǎn)C(),求當(dāng)x≥1時(shí)y1的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一項(xiàng)“過(guò)關(guān)游戲”規(guī)定:在過(guò)第n關(guān)時(shí)要將一顆質(zhì)地均勻的骰子(六個(gè)面上分別刻有1到6的點(diǎn)數(shù))拋擲n次,若n次拋擲所出現(xiàn)的點(diǎn)數(shù)之和大于n2,則算過(guò)關(guān);否則不算過(guò)關(guān),則能過(guò)第二關(guān)的概率是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某過(guò)天橋的設(shè)計(jì)圖是梯形ABCD(如圖所示),橋面DC與地面AB平行,DC=62米,AB=88米.左斜面AD與地面AB的夾角為23°,右斜面BC與地面AB的夾角為30°,立柱DE⊥AB于E,立柱CF⊥AB于F,求橋面DC與地面AB之間的距離(精確到0.1米)sin23°=0.3907,cos23°=0.9205,tan23°=0.4245
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
自然數(shù)4,5,5,x,y從小到大排列后,其中位數(shù)為4,如果這組數(shù)據(jù)唯一的眾數(shù)是5,那么,所有滿足條件的x,y中,x+y的最大值是( 。
A.3 B.4 C.5 D.6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com