【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元
(1)A商品的單價是元,B商品的單價是
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,設(shè)購買A商品的件數(shù)為x件,該商店購買的A、B兩種商品的總費用為y元 ①求y與x的函數(shù)關(guān)系式
②如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,求購買B商品最多有多少件?

【答案】
(1)16;4
(2)解:①由題意可得,

y=16x+4(2x﹣4)=24x﹣16,

即y與x的函數(shù)關(guān)系式是y=24x﹣16;

②由題意可得,

,

解得,12≤x≤13,

∴20≤2x﹣4≤22,

∴購買B商品最多有22件,

答:購買B商品最多有22件.


【解析】解:(1)A商品的單價是x元,B商品的單價是y元, ,
解得,
即A商品的單價是16元,B商品的單價是4元,
所以答案是:16,4;
【考點精析】根據(jù)題目的已知條件,利用一元一次不等式組的應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y= x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標(biāo)是(2,0),B點坐標(biāo)是(8,6).
(1)求二次函數(shù)的解析式;
(2)求函數(shù)圖象的頂點坐標(biāo)及D點的坐標(biāo);
(3)二次函數(shù)的對稱軸上是否存在一點C,使得△CBD的周長最小?若C點存在,求出C點的坐標(biāo);若C點不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根x1 , x2
(1)求m的取值范圍;
(2)當(dāng)x12+x22=6x1x2時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為a的正方形中挖掉一個邊長為b的小正方形(a>b).把余下的部分剪拼成一個矩形(如圖).通過計算圖形(陰影部分)的面積,驗證了一個等式,則這個等式是(

A. a2﹣b2=(a+b)(a﹣b) B. (a+b)2=a2+2ab+b2

C. (a﹣b)2=a2﹣2ab+b2 D. a2﹣ab=a(a﹣b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)y=2x2﹣3ax+1,在自變量x的值滿足1≤x≤3的情況下,與其對應(yīng)的函數(shù)值y的最小值為﹣23,則a的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2+ x﹣ (k>0)與x軸交于點A、B,點A在點B的右邊,與y軸交于點C
(1)如圖1,若∠ACB=90°

①求k的值;
②點P為x軸上方拋物線上一點,且點P到直線BC的距離為 ,則點P的坐標(biāo)為(請直接寫出結(jié)果)
(2)如圖2,當(dāng)k=2時,過原點O的任一直線y=mx(m≠0)交拋物線于點E、F(點E在點F的左邊)

①若OF=2OE,求直線y=mx的解析式;
②求 + 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E是正方形ABCD對角線AC上的一點,AE=AD,過點E作AC的垂線,交邊CD于點F,∠FAD=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一塊正方形和一塊等腰直角三角形如圖1擺放.

(1)如果把圖1中的△BCN繞點B逆時針旋轉(zhuǎn)90°,得到圖2,則∠GBM=;

(2)將△BEF繞點B旋轉(zhuǎn).
①當(dāng)M,N分別在AD,CD上(不與A,D,C重合)時,線段AM,MN,NC之間有一個不變的相等關(guān)系式,請你寫出這個關(guān)系式:;(不用證明)
②當(dāng)點M在AD的延長線上,點N在DC的延長線時(如圖3),①中的關(guān)系式是否仍然成立?若成立,寫出你的結(jié)論,并說明理由;若不成立,寫出你認(rèn)為成立的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為y1(元),在乙采摘園所需總費用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關(guān)系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克元;
(2)求y1、y2與x的函數(shù)表達(dá)式;
(3)在圖中畫出y1與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.

查看答案和解析>>

同步練習(xí)冊答案