【題目】對于點Pa,b),點Qcd),如果abcd,那么點P與點Q就叫作等差點.例如:點P4,2),點Q(﹣1,﹣3),因421﹣(﹣3)=2,則點P與點Q就是等差點.如圖在矩形GHMN中,點H2,3),點N(﹣2,﹣3),MNy軸,HMx軸,點P是直線yx+b上的任意一點(點P不在矩形的邊上),若矩形GHMN的邊上存在兩個點與點P是等差點,則b的取值范圍為_____

【答案】5b5

【解析】

由題意,G(-23),M(2,-3),根據(jù)等差點的定義可知,當直線yx+b與矩形MNGH有兩個交點時,矩形GHMN的邊上存在兩個點與點P是等差點,求出直線經(jīng)過點GM時的b的值即可判斷.

解:由題意,G(-2,3),M(2-3),

根據(jù)等差點的定義可知,當直線yx+b與矩形MNGH有兩個交點時,矩形GHMN的邊上存在兩個點與點P是等差點,

當直線yx+b經(jīng)過點G(-23)時,b5,

當直線yx+b經(jīng)過點M(2,-3)時,b-5,

∴滿足條件的b的范圍為:-5b5

故答案為:-5b5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 ,且 的距離為1, 的距離為2,等腰 △ABC的頂點分別在直線 , 上,AB=AC,∠BAC=120° ,則等腰三角形的底邊長為。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,、是直線,,,.平行嗎?為什么?

解:,理由如下:

(已知)

(已知)

_________

(已知)

_________(等量代換)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著低碳生活,綠色出行理念的普及,新能源汽車正逐漸成為人們喜愛的交通工具.某汽車銷售公司計劃購進一批新能源汽車嘗試進行銷售,據(jù)了解2A型汽車、3B型汽氣車的進價共計80萬元;3A型汽車、2B型汽車的進價共計95萬元。

(1)A、B兩種型號的汽車每輛進價分別為多少方元?

(2)若該公司計劃正好用200萬元購進以上兩種型號的新能源汽車(兩種型號的汽車均購買),請你幫助該公司設計購買方案;

(3)若該汽車銷售公司銷售1A型汽車可獲利8000,銷售1B型汽車可獲利5000,(2)中的購買方案中,假如這些新能源汽車全部售出,哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小方格都是長為1個單位的正方形,若學校位置坐標為A12),解答以下問題:

1)請在圖中建立適當?shù)闹苯亲鴺讼,并寫出圖書館B位置的坐標;

2)若體育館位置坐標為C(-3,3),請在坐標系中標出體育館的位置,并順次連接學校、圖書館、體育館,得到△ABC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形中,為對角線上一點,且,,延長

1)求證:

2)已知如圖(2),上一點,連接,并將逆時針旋轉(zhuǎn),連接,的中點,連接,試求出

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列一段文字,再解答問題
已知在平面內(nèi)有兩點,其兩點間的距離公式為,同時,當兩點所在的直線在坐標軸上或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可簡化為
已知點,,試求A,B兩點間的距離;
已知點A,B在平行于y軸的直線上,點A的縱坐標為5,點B的縱坐標為,試求A,B兩點間的距離;
已知點,,判斷線段AB,BC,AC中哪兩條是相等的?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中有大小不同的平行四邊形,第一幅圖中有1個平行四邊形,第二幅圖中有3個平行四邊形,第三幅圖中有5個平行四邊形,則第6幅和第7幅圖中合計有( )個平行四邊形

A.22B.24C.26D.28

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索題:圖a是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖b的形狀拼成一個正方形.

(1)請用兩種不同的方法,求圖b中陰影部分的面積:

方法1: ; 方法2: ;

(2)觀察圖b,寫出代數(shù)式, , 之間的等量關系,并通過計算驗證;

(3)根據(jù)(2)題中的等量關系,解決如下問題:若, ,求的值.

查看答案和解析>>

同步練習冊答案