【題目】如圖,矩形ABCD中,AB=6cm,BC=8cm,E、F是對角線AC上的兩個動點,分別從A、C同時出發(fā),相向而行,速度均為2cm/s,運動時間為t(0≤t≤5)秒.
(1)若G、H分別是AB、DC的中點,且t≠2.5s,求證:以E、G、F、H為頂點的四邊形始終是平行四邊形;
(2)在(1)的條件下,當t為何值時?以E、G、F、H為頂點的四邊形是矩形;
(3)若G、H分別是折線A-B-C,C-D-A上的動點,分別從A、C開始,與E.F相同的速度同時出發(fā),當t為何值時,以E、G、F、H為頂點的四邊形是菱形,請直接寫出t的值.
【答案】(1)證明見解析;(2)當t為4.5秒或0.5秒時,四邊形EGFH是矩形;(3)t為秒時,四邊形EGFH是菱形.
【解析】
(1)根據勾股定理求出AC,證明△AFG≌△CEH,根據全等三角形的性質得到GF=HE,利用內錯角相等得GF∥HE,根據平行四邊形的判定可得結論;
(2)如圖1,連接GH,分AC-AE-CF=8.AE+CF-AC=8兩種情況,列方程計算即可;
(3)連接AG.CH,判定四邊形AGCH是菱形,得到AG=CG,根據勾股定理求出BG,得到AB+BG的長,根據題意解答.
解:(1)∵四邊形ABCD是矩形,
∴AB=CD,AB∥CD,AD∥BC,∠B=90°,
∴∠BAC=∠DCA,
∵AB=6cm,BC=8cm,
∴AC=10cm,
∵G、H分別是AB、DC的中點,
∴AG=AB,CH=CD,
∴AG=CH,
∵E、F是對角線AC上的兩個動點,分別從A、C同時出發(fā),相向而行,速度均為2cm/s,
∴AE=CF,
∴AF=CE,
∴△AGF≌△CHE(SAS),
∴GF=HE,∠AFG=∠CEH,
∴GF∥HE,
∴以E、G、F、H為頂點的四邊形始終是平行四邊形;
(2)如圖1,連接GH,由(1)可知四邊形EGFH是平行四邊形,
∵G、H分別是AB.DC的中點,
∴GH=BC=8cm,
∴當EF=GH=8cm時,四邊形EGFH是矩形,分兩種情況:
①若AE=CF=2t,則EF=10-4t=8,解得:t=0.5,
②若AE=CF=2t,則EF=2t+2t-10=8,解得:t=4.5,
即當t為4.5秒或0.5秒時,四邊形EGFH是矩形;
(3)如圖2,連接AG、CH,
∵四邊形GEHF是菱形,
∴GH⊥EF,OG=OH,OE=OF,
∵AF=CE
∴OA=OC,
∴四邊形AGCH是菱形,
∴AG=CG,
設AG=CG=x,則BG=8-x,
由勾股定理得:AB2+BG2=AG2,
即62+(8-x)2=x2,解得:x=,
∴BG=8-=,
∴AB+BG=6+=,
t=÷2=,
即t為秒時,四邊形EGFH是菱形.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,為軸負半軸上一點,點為軸正半軸上一點,其中滿足方程.
(1)求點、的坐標;
(2)點為軸負半軸上一點,且的面積為,求點的坐標;
(3)在上是否存在一點,使的面積等于的面積的一半,若存在,求出相應的點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系上有點A(1,0),點A第一次跳動至點,第二次點跳動至點第三次點跳動至點,第四次點跳動至點……,依此規(guī)律跳動下去,則點與點之間的距離是( )
A. 2017B. 2018C. 2019D. 2020
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新華商場銷售某種冰箱,每臺進價為2500元,銷售價為2900元,平均每天能售出8臺;調查發(fā)現,當銷售價每降低50元,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達到5000元,每臺冰箱應該降價多少元?若設每臺冰箱降價x元,根據題意可列方程( )
A. (2900-x)(8+4×)=5000 B. (400-x)(8+4×)=5000
C. 4(2900-x)(8+)=5000 D. 4(400-x)(8+)=5000
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=1,∠A=45°,邊長為1的正方形的一個頂點D在邊AC上,與△ABC另兩邊分別交于點E、F,DE∥AB,將正方形平移,使點D保持在AC上(D不與A重合),設AF=x,正方形與△ABC重疊部分的面積為y.
(1)求y與x的函數關系式并寫出自變量x的取值范圍;
(2)x為何值時y的值最大?
(3)x在哪個范圍取值時y的值隨x的增大而減小?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.
請?zhí)羁胀瓿上铝凶C明.
證明:如圖,作Rt△ABC的斜邊上的中線CD,
則 CD=AB=AD ( ).
∵AC=AB,
∴AC=CD=AD 即△ACD是等邊三角形.
∴∠A= °.
∴∠B=90°﹣∠A=30°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點D是AC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與A、D重合,連接BE、EC.
試猜想線段BE和EC的數量及位置關系,并證明你的猜想.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com