分析 (1)△PQR的邊QR經(jīng)過點(diǎn)B時(shí),△ABQ構(gòu)成等腰直角三角形,則有AB=AQ,由此列方程求出t的值;
(2)在圖形運(yùn)動的過程中,有三種情形,當(dāng)1<t≤2時(shí),當(dāng)1<t≤2時(shí),當(dāng)2<t≤4時(shí),進(jìn)行分類討論求出答案.
解答 解:(1)△PQR的邊QR經(jīng)過點(diǎn)B時(shí),△ABQ構(gòu)成等腰直角三角形,
∴AB=AQ,即3=4-t,
∴t=1.
即當(dāng)t=1秒時(shí),△PQR的邊QR經(jīng)過點(diǎn)B.
故答案為:1;
(2)①當(dāng)0≤t≤1時(shí),如答圖1所示.
設(shè)PR交BC于點(diǎn)G,
過點(diǎn)P作PH⊥BC于點(diǎn)H,則CH=OP=2t,GH=PH=3.
S=S矩形OABC-S梯形OPGC
=8×3-$\frac{1}{2}$(2t+2t+3)×3
=$\frac{39}{2}$-6t;
②當(dāng)1<t≤2時(shí),如答圖2所示.
設(shè)PR交BC于點(diǎn)G,RQ交BC、AB于點(diǎn)S、T.
過點(diǎn)P作PH⊥BC于點(diǎn)H,則CH=OP=2t,GH=PH=3.
QD=t,則AQ=AT=4-t,
∴BT=BS=AB-AQ=3-(4-t)=t-1.
S=S矩形OABC-S梯形OPGC-S△BST
=8×3-$\frac{1}{2}$(2t+2t+3)×3-$\frac{1}{2}$(t-1)2
=-$\frac{1}{2}$t2-5t+19;
③當(dāng)2<t≤4時(shí),如答圖3所示.
設(shè)RQ與AB交于點(diǎn)T,則AT=AQ=4-t.
PQ=12-3t,
∴PR=RQ=$\frac{\sqrt{2}}{2}$(12-3t).
S=S△PQR-S△AQT
=$\frac{1}{2}$PR2-$\frac{1}{2}$AQ2
=$\frac{1}{4}$(12-3t)2-$\frac{1}{2}$(4-t)2
=$\frac{7}{4}$t2-14t+28.
綜上所述,S關(guān)于t的函數(shù)關(guān)系式為:
S=$\left\{\begin{array}{l}{\frac{39}{2}-6t(0≤t≤1)}\\{-\frac{1}{2}{t}^{2}-5t+19(1<t≤2)}\\{\frac{7}{4}{t}^{2}-14t+28(2<t≤4)}\end{array}\right.$.
點(diǎn)評 此題屬于四邊形綜合題.考查了矩形的性質(zhì)、等腰直角三角形的性質(zhì)、相似三角形的判定與性質(zhì)以及動點(diǎn)問題.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com