【題目】設(shè)邊長(zhǎng)為的正方形的中心在直線上,它的一組對(duì)邊垂直于直線,半徑為的圓的圓心在直線上運(yùn)動(dòng),、兩點(diǎn)之間的距離為.
()如圖①,當(dāng)時(shí),填表:
、、之間的數(shù)量關(guān)系 | ⊙與正方形的公共點(diǎn)個(gè)數(shù) |
__________ | |
__________ | |
__________ |
()如圖②,⊙與正方形有個(gè)公共點(diǎn)、、、、,求此時(shí)與之間的數(shù)量關(guān)系:
()由()可知,、、之間的數(shù)量關(guān)系和⊙與正方形的公共點(diǎn)個(gè)數(shù)密切相關(guān).當(dāng)時(shí),請(qǐng)根據(jù)、、之間的數(shù)量關(guān)系,判斷⊙與正方形的公共點(diǎn)個(gè)數(shù).
()當(dāng)與之間滿足()中的數(shù)量關(guān)系時(shí),⊙與正方形的公共點(diǎn)個(gè)數(shù)為__________.
【答案】 2 1 0 5
【解析】試題分析:(1)利用圓直線位置關(guān)系可得結(jié)果.(2) 連接,在中,由勾股定理a與r的關(guān)系.(3) 當(dāng)時(shí),⊙的直徑等于正方形的邊長(zhǎng), 與正方形一邊相切,相交,與正方形四邊形相切,四種情況.(4) 由()中的數(shù)易關(guān)系,即,⊙與正方形的公共點(diǎn)個(gè)數(shù)為個(gè).
試題解析:
()解:當(dāng)時(shí),的直徑小于正方形的邊長(zhǎng),
與正方形中垂直于直線的一邊相離、相切、相交,三種情況,
故可確定⊙與正方形的公共點(diǎn)的個(gè)數(shù)可能有、、個(gè).
()如圖所示,連接,
則,,
在中,由勾股定理得:
,
即span>,
,
,
.
()當(dāng)時(shí),⊙的直徑等于正方形的邊長(zhǎng),
此時(shí)會(huì)出現(xiàn)與正方形相離,與正方形一邊相切,相交,與正方形四邊形相切,四種情況,
故可確定⊙與正方形的交點(diǎn)個(gè)數(shù)可能有、、、個(gè).
()由()中的數(shù)易關(guān)系,
即,
⊙與正方形的公共點(diǎn)個(gè)數(shù)為個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E為邊CD上一點(diǎn),將沿AE折疊至處,與CE交于點(diǎn)若,,則的大小為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,AC=AD,增加下列條件:①AB=AE;②BC=DE;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的條件是______________.(填寫(xiě)序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O在直線AB上,OC⊥AB,△ODE中,∠ODE=90°,∠EOD=60°,先將△ODE一邊OE與OC重合,然后繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)OE與OB重合時(shí)停止旋轉(zhuǎn).
(1)當(dāng)OD在OA與OC之間,且∠COD=20°時(shí),則∠AOE=______;
(2)試探索:在△ODE旋轉(zhuǎn)過(guò)程中,∠AOD與∠COE大小的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)說(shuō)明理由;
(3)在△ODE的旋轉(zhuǎn)過(guò)程中,若∠AOE=7∠COD,試求∠AOE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,AE⊥BC于點(diǎn)E,∠BAE=30°,AD=4cm.
(1)求菱形ABCD的各角的度數(shù);
(2)求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見(jiàn)的旱災(zāi),“旱災(zāi)無(wú)情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車(chē)共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車(chē)最多可裝飲用水40件和蔬菜10件,每輛乙種貨車(chē)最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門(mén)安排甲、乙兩種貨車(chē)時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái);
(3)在(2)的條件下,如果甲種貨車(chē)每輛需付運(yùn)費(fèi)400元,乙種貨車(chē)每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門(mén)應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD垂直平分OB于點(diǎn)E,點(diǎn)F在AB延長(zhǎng)線上,∠AFC=30°.
(1)求證:CF為⊙O的切線.
(2)若半徑ON⊥AD于點(diǎn)M,CE=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E,連接BD,CD.
(1)求證:BD=CD;
(2)請(qǐng)判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是邊AB上的動(dòng)點(diǎn),若在邊AC,BC上分別有點(diǎn)E,F,使得
AE=AD,BF=BD.
(1)設(shè)∠C=α,求∠EDF(用含α的代數(shù)式表示);
(2)尺規(guī)作圖:分別在邊AB,AC上確定點(diǎn)P,Q(PQ不與DE平行或重合),使得
∠CPQ=∠EDF.(保留作圖痕跡,不寫(xiě)作法)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com