【題目】如圖,點(diǎn)E正方形ABCD外一點(diǎn),點(diǎn)F是線段AE上一點(diǎn),△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.
(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.
【答案】
(1)
證明:∵四邊形ABCD是正方形,
∴AB=CB,∠ABC=90°,
∵△EBF是等腰直角三角形,其中∠EBF=90°,
∴BE=BF,
∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,
∴∠ABF=∠CBE.
在△ABF和△CBE中,有 ,
∴△ABF≌△CBE(SAS).
(2)
解:△CEF是直角三角形.理由如下:
∵△EBF是等腰直角三角形,
∴∠BFE=∠FEB=45°,
∴∠AFB=180°﹣∠BFE=135°,
又∵△ABF≌△CBE,
∴∠CEB=∠AFB=135°,
∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,
∴△CEF是直角三角形.
【解析】(1)根據(jù)正方形的性質(zhì),得到AB=CB,∠ABC=90度,從而可轉(zhuǎn)成∠ABF=∠EBC,則根據(jù)“SAS”判定全等;
(2)根據(jù)等腰直角三角形,和全等三角形的性質(zhì)去解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)BF⊥CE于點(diǎn)F,交CD于點(diǎn)G(如圖①).求證:AE=CG;
(2)AH⊥CE,垂足為H,交CD的延長線于點(diǎn)M(如圖②),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,E為AC的中點(diǎn),AD平分∠BAC,BA:CA=2:3,AD與BE相交于點(diǎn)O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是( 。
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(3,2),B(1,3),△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1 .
(1)點(diǎn)A關(guān)于點(diǎn)O中心對(duì)稱的點(diǎn)P的坐標(biāo)為;
(2)在網(wǎng)格內(nèi)畫出△A1OB1;
(3)點(diǎn)A1、B1的坐標(biāo)分別為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線m,n的夾角為35°,相交于點(diǎn)O.
(1)作出△ABC關(guān)于直線m的對(duì)稱△DEF;
(2)作出△DEF關(guān)于直線n的對(duì)稱△PQR;
(3)△PQR還可以由△ABC經(jīng)過一次怎樣的變換得到.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(4,6).雙曲線y= (x>0)的圖象經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是邊上一點(diǎn),且△BCF∽△EBD,求直線FB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)A在x軸的正半軸,點(diǎn)C在y軸的正半軸.拋物線y= x2﹣ x+4經(jīng)過點(diǎn)B,C,連接OB,D是OB上的動(dòng)點(diǎn),過D作DE∥OA交拋物線于點(diǎn)E(在對(duì)稱軸右側(cè)),過E作EF⊥OB于F,以ED,EF為鄰邊構(gòu)造DEFG,則DEFG周長的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是以AB為直徑的圓,C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長線于點(diǎn)F,連結(jié)CA,CB.
(1)求證:AC平分∠DAB;
(2)若⊙O的半徑為5,且tan∠DAC= ,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)長方體的表面展開圖中四邊形ABCD是正方形(正方形的四個(gè)角都是直角、四條邊都相等),則根據(jù)圖中數(shù)據(jù)可得原長方體的體積是_________cm3.
【答案】20
【解析】
利用正方形的性質(zhì)以及圖形中標(biāo)注的長度得出AB=AE=5cm,進(jìn)而得出長方體的長、寬、高進(jìn)而得出答案.
如圖:
,
∵四邊形ABCD是正方形,
∴AB=AE=5cm,
∴立方體的高為:(7-5)÷2=1(cm),
∴EF=5-1=4(cm),
∴原長方體的體積是:5×4×1=20(cm3).
故答案為:20.
【點(diǎn)睛】
此題主要考查了幾何體的展開圖,利用已知圖形得出各邊長是解題關(guān)鍵.
【題型】填空題
【結(jié)束】
19
【題目】計(jì)算:
(1)-4-28-(-19)+(-24);
(2)-14÷(2017-π)0-(-)-2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com