【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.且△OCP與△PDA的面積比為1:4
(1)如圖1,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OP、OA.
①求證:△OCP∽△PDA;
②求邊AB的長;

(2)如圖2,連結(jié)AP、BP.動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問當(dāng)點(diǎn)M、N在移動(dòng)過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段EF的長度.

【答案】
(1)

解:①如圖1中,∵四邊形ABCD是矩形,

∴∠C=∠D=90°,

∴∠DPA+∠DAP=90°,

∵由折疊可得∠APO=∠B=90°,

∴∠DPA+∠CPO=90°,

∴∠DAP=∠CPO,

又∵∠D=∠C,

∴△OCP∽△PDA;

②如圖1,∵△OCP與△PDA的面積比為1:4,

= = = ,

∴CP= AD=4,

設(shè)OP=x,則CO=8﹣x,

在Rt△PCO中,∠C=90°,

由勾股定理得 x2=(8﹣x)2+42,

解得:x=5,

∴AB=AP=2OP=10,

∴邊AB的長為10


(2)

解:結(jié)論:線段EF的長度不發(fā)生變化.EF=2

理由:如圖2中,作MQ∥AN,交PB于點(diǎn)Q,

∵AP=AB,MQ∥AN,

∴∠APB=∠ABP=∠MQP.

∴MP=MQ,

∵BN=PM,

∴BN=QM.

∵M(jìn)P=MQ,ME⊥PQ,

∴EQ= PQ.

∵M(jìn)Q∥AN,

∴∠QMF=∠BNF,

在△MFQ和△NFB中,

,

∴△MFQ≌△NFB(AAS),

∴QF=FB,

∴QF= QB,

∴EF=EQ+QF= PQ+ QB= PB,

由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,

∴PB= =4

∴EF= PB=2

∴當(dāng)點(diǎn)M、N在移動(dòng)過程中,線段EF的長度不變,它的長度為2


【解析】(1)①只要證明∠PAD=∠CPO,由∠D=∠C=90°,即可證出△OCP∽△PDA;②根據(jù)△OCP與△PDA的面積比為1:4,得出CP= AD=4,設(shè)OP=x,則CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42 , 求出x,最后根據(jù)AB=2OP即可求出邊AB的長;(2)作MQ∥AN,交PB于點(diǎn)Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ= PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF= QB,再求出EF= PB,由(1)中的結(jié)論求出PB,即可判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+bx+c與x軸交與點(diǎn)A(﹣3,0),點(diǎn)B(9,0),與y軸交與點(diǎn)C,頂點(diǎn)為D,連接AD、DB,點(diǎn)P為線段AD上一動(dòng)點(diǎn).

(1)求拋物線的解析式;
(2)過點(diǎn)P作BD的平行線,交AB于點(diǎn)Q,連接DQ,設(shè)AQ=m,△PDQ的面積為S,求S關(guān)于m的函數(shù)解析式,以及S的最大值;
(3)如圖2,拋物線對(duì)稱軸與x軸交與點(diǎn)G,E為OG的中點(diǎn),F(xiàn)為點(diǎn)C關(guān)于DG對(duì)稱的對(duì)稱點(diǎn),過點(diǎn)P分別作直線EF、DG的垂線,垂足為M、N,連接MN,當(dāng)△PMN為等腰三角形時(shí),求此時(shí)EM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩圓圓心相同,大圓的弦AB與小圓相切,若圖中陰影部分的面積是16π,則AB的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)如圖①,對(duì)△ABC作變換[60°, ]得△AB′C′,則SAB′C′:SABC=;直線BC與直線B′C′所夾的銳角為度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對(duì)△ABC 作變換[θ,n]得△AB′C′,使點(diǎn)B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對(duì)△ABC作變換[θ,n]得△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量校園水平地面上一棵不可攀的樹的高度,學(xué)校數(shù)學(xué)興趣小組做了如下探索:根據(jù)光的反射定律,利用一面鏡子和一根皮尺,設(shè)計(jì)如下圖所示的測量方案:把一面很小的鏡子水平放置在離B(樹底)8.4米的點(diǎn)E處,然后沿著直線BE后退到點(diǎn)D,這時(shí)恰好在鏡子里看到樹梢頂點(diǎn)A,再用皮尺量得DE=3.2米,觀察者目高CD=1.6米,求樹AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BP交EF于點(diǎn)Q,對(duì)于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意解答
(1)計(jì)算:|﹣ |+(π﹣3)0+( 1﹣2cos45°
(2)若關(guān)于x的一元二次方程x2+(k+3)x+k=0的一個(gè)根是﹣2,求方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= x+2與雙曲線相交于點(diǎn)A(m,3),與x軸交于點(diǎn)C.
(1)求雙曲線解析式;
(2)點(diǎn)P在x軸上,如果△ACP的面積為3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程與方程組
(1)解方程: + =4.
(2)解不等式組:

查看答案和解析>>

同步練習(xí)冊(cè)答案