【題目】某商店將進價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高0.5元其銷售量就減少10件,問:
(1)應將每件售價定為多少元時,才能使每天利潤為640元?
(2)店主想要獲得每天800元的利潤,小紅同學認為不可能,如果你同意小紅同學的說法,請進行說明;如果你不同意,請簡要說明理由.
【答案】(1)每件售價定為12元或16元;(2)同意小紅同學的說法,見解析
【解析】
(1)首先設將每件商品提價x元,則每天可售出該商品(200-)件,然后根據(jù)題意列出方程,即可得解;
(2)首先設將每件商品提價y元,則每天可售出該商品(200-)件,然后根據(jù)題意列出方程,由根的判別式得出方程無解,即可得解.
(1)設將每件商品提價x元,則每天可售出該商品(200-)件,
根據(jù)題意,得(10-8+x)(200-)=640,
解得x1=2,x2=6.
∴10+x=12或16,
答:每件售價定為12元或16元;
(2)同意小紅同學的說法,理由如下:
設將每件商品提價y元,則每天可售出該商品(200-)件,
根據(jù)題意,得(10-8+y)(200-) =800,
整理,得y2-8y+20=0,
∵Δ= (-8)2-4×1×20=-16<0,
∴該方程無實數(shù)解,即小紅的說法正確.
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=x2﹣2x﹣3與x軸兩交點之間的距離為_____.拋物線頂點、與x軸正半軸和y軸的交點圍成的三角形面積是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD,點P從點A出發(fā)以每秒1個單位長度的速度沿A﹣D﹣C的路徑向點C運動,同時點Q從點B出發(fā)以每秒2個單位長度的速度沿B﹣C﹣D﹣A的路徑向點A運動,當Q到達終點時,P停止移動,設△PQC的面積為S,運動時間為t秒,則能大致反映S與t的函數(shù)關系的圖象是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:一次函數(shù)的圖象與反比例函數(shù)()的圖象相交于A,B兩點(A在B的右側).
(1)當A(4,2)時,求反比例函數(shù)的解析式及B點的坐標;
(2)在(1)的條件下,反比例函數(shù)圖象的另一支上是否存在一點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)當A(a,﹣2a+10),B(b,﹣2b+10)時,直線OA與此反比例函數(shù)圖象的另一支交于另一點C,連接BC交y軸于點D.若,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是⊙O的直徑,弧BA=弧BC,BD交AC于點E,點F在DB的延長線上,且∠BAF=∠C.
(1)求證:AF是⊙O的切線;
(2)求證:△ABE∽△DBA;
(3)若BD=8,BE=6,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=與x軸、y軸分別交于A、B兩點,P是以C(0,2)為圓心,2為半徑的圓上一動點,連結PA、PB.則△PAB面積的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函數(shù)的圖象經(jīng)過點.
(1)求點的坐標和反比例函數(shù)的解析式;
(2)將四邊形沿軸向上平移個單位長度得到四邊形,問點是否落在(1)中的反比例函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC在平面直角坐標系中的位置如圖所示.請解答:
(1)點A、C的坐標分別是 、 ;
(2)畫出△ABC繞點A按逆時針方向旋轉90°后的△AB'C';
(3)在(2)的條件下,求點C旋轉到點C'所經(jīng)過的路線長(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司開發(fā)出一款新包裝的牛奶,牛奶的成本價為6元/盒,這種新包裝的牛奶在正式投放市場前通過代銷點進行了為期一個月(30天)的試營銷,售價為8元/盒.前幾天的銷量每況愈下,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪成圖象,圖中的線段表示前12天日銷售量y(盒)與銷售時間x(天)之間的函數(shù)關系,于是從第13天起采用打折銷售(不低于成本價),時間每增加1天,日銷售量就增加10盒.
(1)打折銷售后,第17天的日銷售量為________盒;
(2)求y與x之間的函數(shù)關系式,并寫出x的取值范圍;
(3)已知日銷售利潤不低于560元的天數(shù)共有6天,設打折銷售的折扣為a折,試確定a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com