【題目】如圖,已知等腰△ABC,∠ACB=120°,P是線段CB上一動(dòng)點(diǎn)(與點(diǎn)C,B不重合),連接AP,延長BC至點(diǎn)Q,使得∠PAC=QAC,過點(diǎn)Q作射線QH交線段APH,交AB于點(diǎn)M,使得∠AHQ=60°.

1)若∠PAC,求∠AMQ的大。ㄓ煤α的式子表示);

2)用等式表示線段QCBM之間的數(shù)量關(guān)系,并證明.

【答案】1)∠AMQ=30°;(2BMCQ,證明見解析.

【解析】

1)根據(jù)等腰△ABC∠ACB=120,得到∠B=∠CAB=30°,由∠ACQ=60°

∠AHQ=60°,可得∠AGH=∠QGC,則有∠MQB=∠PAC=α,利用三角形的外角的性質(zhì),可知∠AMQ=30°+α;

2)過點(diǎn)MME∥AC,交BQ于點(diǎn)E,根據(jù)∠PAC=∠QAC=α,∠QAM=∠QMA=30°+α,可得QA=QM,∠ACQ=∠MEQ=60,利用AAS可證△QAC≌△MQE,可以得出EM=EB,設(shè)EN=x,則BE=EM=2x,BNx,可得BM=2x,CQ=EM=2x,可求出 BMCQ

1)如圖

∠ACB=120°AC=BC,

∴∠B=∠CAB=30°,∠ACQ=60°

∵∠AHQ=60°

∵∠AGH=∠QGC,∴∠MQB=∠PAC=α

∠AMQ=∠B+∠MQB=30°+α;

2)如圖,

過點(diǎn)MME∥AC,交BQ于點(diǎn)E

∵∠PAC=∠QAC=α,

∴∠QAM=∠QMA=30°+α,

∴QA=QM

∴∠ACQ=∠MEQ=60°,∠QAC=∠MQE,

∴△QAC≌△MQEAAS),∴CQ=EM

∵∠B=30°∴∠EMB=30°,∴EM=EB,

EN⊥BM于點(diǎn)N

設(shè)EN=x,則BE=EM=2xBNx,∴BM=2x,

CQ=EM=2x,∴BMCQ

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

1)甲說:該二次函數(shù)的圖象必定經(jīng)過點(diǎn).乙說:若圖象的頂點(diǎn)在x軸上,則,你覺得他們的結(jié)論對嗎?請說明理由;

2)若拋物線經(jīng)過,,求證;

3)甲問乙:我取的k是一個(gè)整數(shù),畫出它的圖象后發(fā)現(xiàn)拋物線與x軸的一個(gè)交點(diǎn)在y軸右側(cè),一個(gè)交點(diǎn)在原點(diǎn)和之間,你知道k等于幾嗎?并求出k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知.在RtOAB中,∠OAB=90°,∠BOA=30°,OA=2,若以O為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將RtOAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.

1)求經(jīng)過點(diǎn)OC,A三點(diǎn)的拋物線的解析式.

2)若點(diǎn)M是拋物線上一點(diǎn),且位于線段OC的上方,連接MOMC,問:點(diǎn)M位于何處時(shí)三角形MOC的面積最大?并求出三角形MOC的最大面積.

3)拋物線上是否存在一點(diǎn)P,使∠OAP=BOC?若存在,請求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,長度為6千米的國道兩側(cè)有,兩個(gè)城鎮(zhèn),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,連接點(diǎn)為,其中、之間的距離為2千米,之間的距離為1千米,之間的鄉(xiāng)鎮(zhèn)公路長度為2.3千米,、之間的鄉(xiāng)鎮(zhèn)公路長度為3.2千米,為了發(fā)展鄉(xiāng)鎮(zhèn)經(jīng)濟(jì),方便兩個(gè)城鎮(zhèn)的物資輸送,現(xiàn)需要在國道上修建一個(gè)物流基地,設(shè)、之間的距離為千米,物流基地沿公路到、兩個(gè)城鎮(zhèn)的距離之和為干米,以下是對函數(shù)隨自變量的變化規(guī)律進(jìn)行的探究,請補(bǔ)充完整.

1)通過取點(diǎn)、畫圖、測量,得到的幾組值,如下表:

/千米

0

1.0

2.0

3.0

4.0

5.0

6.0

/千米

10.5

8.5

6.5

10.5

12.5

2)如圖2,建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.

3)結(jié)合畫出的函數(shù)圖象,解決問題:

①若要使物流基地沿公路到、兩個(gè)城鎮(zhèn)的距離之和最小,則物流基地應(yīng)該修建在何處?(寫出所有滿足條件的位置)

答:__________

②如右圖,有四個(gè)城鎮(zhèn)、、、分別位于國道兩側(cè),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,若要在國道上修建一個(gè)物流基地,使得沿公路到、、的距離之和最小,則物流基地應(yīng)該修建在何處?(寫出所有滿足條件的位置)

答:__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠C=90°,ADDB,點(diǎn)EAB的中點(diǎn),DEBC

1)求證:BD平分∠ABC

2)連接EC,若∠A=30°,DC,求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李經(jīng)營一家水果店,某日到水果批發(fā)市場批發(fā)一種水果.經(jīng)了解,一次性批發(fā)這種水果不得少于,超過時(shí),所有這種水果的批發(fā)單價(jià)均為3.圖中折線表示批發(fā)單價(jià)(元)與質(zhì)量的函數(shù)關(guān)系.

1)求圖中線段所在直線的函數(shù)表達(dá)式;

2)小李用800元一次可以批發(fā)這種水果的質(zhì)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點(diǎn)上的一點(diǎn),在同側(cè)作正方形,正方形分別為對角線的中點(diǎn),連結(jié)當(dāng)點(diǎn)沿著線段由點(diǎn)向點(diǎn)方向上移動(dòng)時(shí),四邊形的面積變化情況為( )

A.不變B.先減小后增大

C.先增大后減小D.一直減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)游泳館夏季推出兩種收費(fèi)方式.方式一:先購買會(huì)員證,會(huì)員證200元,只限本人當(dāng)年使用,憑證游泳每次需另付費(fèi)10元:方式二:不購買會(huì)員證,每次游泳需付費(fèi)20元.

1)若甲計(jì)劃今年夏季游泳的費(fèi)用為500元,則選擇哪種付費(fèi)方式游泳次數(shù)比較多?

2)若乙計(jì)劃今年夏季游泳的次數(shù)超過15次,則選擇哪種付費(fèi)方式游泳花費(fèi)比較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c經(jīng)過點(diǎn)A3,0)和點(diǎn)B2,3),過點(diǎn)A的直線與y軸的負(fù)半軸相交于點(diǎn)C,且tanCAO=

1)求這條拋物線的表達(dá)式及對稱軸;

2)聯(lián)結(jié)ABBC,求∠ABC的正切值;

3)若點(diǎn)Dx軸下方的對稱軸上,當(dāng)SDBC=SADC時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案