【題目】如圖,AB為⊙O的直徑,點(diǎn)C為AB延長(zhǎng)線上一點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC方向以1cm/s的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)以相同的速度沿CA方向運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)停止運(yùn)動(dòng),過(guò)點(diǎn)P作AB的垂線,分別交⊙O于點(diǎn)M和點(diǎn)N,已知⊙O的半徑為 cm,AC=8cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求證:NQ=MQ;
(2)填空: ①當(dāng)t=時(shí),四邊形AMQN為菱形;
②當(dāng)t=時(shí),NQ與⊙O相切.
【答案】
(1)證明:∵AB⊥MN,
∴PM=PN
∴AB垂直平分MN,
∴NQ=MQ;
(2) ;2
【解析】(2)解:①AP=t,CQ=t,則PQ=8﹣t﹣t=8﹣2t,
∵AQ⊥MN,PM=PN,
∴當(dāng)AP=PQ時(shí),四邊形AMQM為菱形,
即t=8﹣2t,解得t= ;②作OH⊥QN于H,如圖,
OQ=AC﹣AO﹣CQ=8﹣ ﹣t= ﹣t,OP=t﹣ ,
當(dāng)ON⊥QN時(shí),QN為⊙O的切線,
∵∠NOQ=∠PON,
∴△ONP∽△OQN,
∴OP:ON=ON:OQ,
即(t﹣ ): = :( ﹣t),
整理得t2﹣8t+12=0,解得t1=2,t2=6(舍去),
∴t=2時(shí),NQ與⊙O相切
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)在一次實(shí)驗(yàn)中統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,給出的統(tǒng)計(jì)圖如圖所示,則 符合這一結(jié)果的實(shí)驗(yàn)可能是( )
A. 擲一枚正六面體的骰子,出現(xiàn)6點(diǎn)的概率
B. 擲一枚硬幣,出現(xiàn)正面朝上的概率
C. 任意寫出一個(gè)整數(shù),能被2整除的概率
D. 一個(gè)袋子中裝著只有顏色不同,其他都相同的兩個(gè)紅球和一個(gè)黃球,從中任意取出一個(gè)是黃球的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,o為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(,3),點(diǎn)B的坐標(biāo)(,6).
(1)若AB與坐標(biāo)軸平行,求AB的長(zhǎng);
(2)若滿足AC⊥軸,垂足為C,BD⊥軸,垂足為D:
①求四邊形ACDB的面積;
②連AB、OA、OB,若△OAB的面積大于6而小于10,求的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC繞著點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°后到達(dá)△CDE的位置,下列說(shuō)法中不正確的是( )
A. AB⊥CD
B. AC⊥CE
C. BC⊥DE
D. 點(diǎn)C與點(diǎn)B是兩個(gè)三角形的對(duì)應(yīng)點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,AC=AD,要使△ABC≌△AED,還需添加一個(gè)條件,那么在①AB=AE,②BC=ED,③∠C=∠D,④∠B=∠E,這四個(gè)關(guān)系中可以選擇的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點(diǎn)D,E.
(1)求證:AE=2CE;
(2)連接CD,請(qǐng)判斷△BCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的文字,解答問(wèn)題:
材料一:大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來(lái),于是小明用來(lái)表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.由此我們得到一個(gè)真命題:
如果,其中是整數(shù),且那么.
材料二:已知是有理數(shù),并且滿足等式求的值.
解:
,解得
請(qǐng)解答:
(1)如果,其中是整數(shù),且那么_______,______.
(2)如果的小數(shù)部分為,的整數(shù)部分為,求的值;
(3)已知是有理數(shù),并且滿足等式,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(n,3)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+6﹣ >0時(shí),x的取值范圍;
(3)若M是x軸上一點(diǎn),S△MOB=S△AOB , 求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明乘坐家門口的公共汽車前往西安北站去乘高鐵,在行駛了三分之一路程時(shí),小明估計(jì)繼續(xù)乘公共汽車到北站時(shí)高鐵將正好開出,于是小明下車改乘出租車,車速提高了一倍,結(jié)果趕在高鐵開車前半小時(shí)到達(dá)西安北站.已知公共汽車的平均速度是20千米/小時(shí)(假設(shè)公共汽車及出租車保持勻速行使,途中換乘、紅綠燈等待等情況忽略不計(jì)),請(qǐng)回答以下兩個(gè)問(wèn)題:
(1)出租車的速度為_____千米/小時(shí);
(2)小明家到西安北站有多少千米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com