【題目】如圖,矩形ABCD的面積為16cm2,對交線交于點O;以AB、AO為鄰邊作平行四邊AOC1B,對角線交于點O1,以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類推,則平行四邊形AO4C5B的面積為( )
A. cm2 B. 1cm2 C. 2cm2 D. 4cm2
【答案】A
【解析】
矩形ABCD的面積=AB×AD=16cm2,過點O向AB作垂線,垂足為E,平行四邊形AOC1B的面積=AB×OE,根據(jù)矩形的性質(zhì),OE=AD,即平行四邊形AOC1B的面積=AB×AD=,過點O1向AB作垂線,垂足為F,根據(jù)平行四邊形的性質(zhì),O1F=OE=AD,即平行四邊形AO1C2B面積=AB×AD=,依此類推,即可得到平行四邊形AO4C5B的面積.
過點O向AB作垂線,垂足為E,過點O1向AB作垂線,垂足為F,如下圖所示:
∵∠DAB=∠OEB,
∴OE∥DA,
∵O為矩形ABCD的對角線交點,
∴OB=OD
∴OE=AD,
矩形ABCD的面積=AB×AD=16cm2,
平行四邊形AOC1B的面積=AB×OE=AB×AD=8 cm2,
同理,根據(jù)平行四邊形的性質(zhì),
O1F=OE=AD,
平行四邊形AO1C2B面積=AB×AD=4 cm2,
依此類推:
平行四邊形AO4C5B的面積=AB×AD=cm2,
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(m+2)x+m=0,
(1)求證:無論m取何值,原方程總有兩個不相等的實數(shù)根.
(2)若x1 , x2是原方程的兩根,且 + =﹣2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場投入13 800元資金購進甲、乙兩種礦泉水共500箱,礦泉水的成本價和銷售價如表所示:
類別/單價 | 成本價 | 銷售價(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場購進甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場共獲得利潤多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:以O(shè)為圓心的扇形AOB中,∠AOB=90°,點C為 上一動點,射線AC交射線OB于點D,過點D作OD的垂線交射線OC于點E,聯(lián)結(jié)AE.
(1)如圖1,當四邊形AODE為矩形時,求∠ADO的度數(shù);
(2)當扇形的半徑長為5,且AC=6時,求線段DE的長;
(3)聯(lián)結(jié)BC,試問:在點C運動的過程中,∠BCD的大小是否確定?若是,請求出它的度數(shù);若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC的底邊BC=13cm,D是腰AB上一點,且CD=12cm, BD=5cm.
(1)求證:△BDC是直角三角形;
(2)求△ABC的周長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,那么添加下列一個條件后,仍無法判定△ABC∽△ADE的是( )
A.∠C=∠AED
B.
C.∠B=∠D
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點在直線上,
(1)直線解析式為 ;
(2)畫出該一次函數(shù)的圖象;
(3)將直線向上平移個單位長度得到直線,與軸的交點的坐標為 ;
(4)直線與直線相交于點,點坐標為 ;
(5)三角形ABC的面積為 ;
(6)由圖象可知不等式的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊長為4,對角線相交于點P,頂點A,C分別在x軸,y軸的正半軸上,拋物線L經(jīng)過O,P,A三點,點E是正方形內(nèi)的拋物線上的動點.
(1)點P的坐標為;
(2)求拋物線L的解析式;
(3)求△OAE與△OCE面積之和的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com