分析 (1)連接EF,則AE=EG,HL可證明Rt△EGF≌Rt△EDF,根據(jù)全等三角形的性質(zhì)即可求解;
(2)設(shè)FC=x,BC=y,則有GF=x,AD=y.根據(jù)DC=2FC得到DF=x,DC=AB=BG=2x,BF=BG+GF=3x,然后利用勾股定理得到y(tǒng)與x之間關(guān)系,從而求得兩條線段的比.
解答 解:(1)同意.連接EF,則∠EGF=∠D=90°.
∵點(diǎn)E是AD的中點(diǎn),
∴由折疊的性質(zhì)知,EG=ED
在Rt△EGF和Rt△EDF中,
$\left\{\begin{array}{l}{EG=ED}\\{EF=EF}\end{array}\right.$,
∴Rt△EGF≌Rt△EDF(HL).
∴GF=DF;
(2)由(1)知,GF=DF.設(shè)FC=x,BC=y,則有GF=x,AD=y.
∵DC=2FC,
∴DF=x,DC=AB=BG=2x,
∴BF=BG+GF=3x.
在Rt△BCF中,由勾股定理得:BC2+CF2=BF2,即y2+x2=(3x)2.
∴y=2$\sqrt{2}$x
∴$\frac{AD}{AB}$=$\frac{y}{2x}$=$\sqrt{2}$.
點(diǎn)評 此題考查了矩形的性質(zhì)、圖形的折疊變換、全等三角形的判定和性質(zhì)、勾股定理的應(yīng)用等重要知識,難度適中.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com