【題目】如圖,已知△ABC中,AB=AC,以AB為直徑的⊙O分別交AC、BC于D、E兩點,連接ED
(1)求證:△CDE為等腰三角形;
(2)若CD=3,BC=4,求AD的長和⊙O的半徑.
【答案】(1)詳見解析;(2)4.
【解析】
如圖,已知△ABC中,AB=AC,以AB為直徑的⊙O分別交AC、BC于D、E兩點,連接ED(1)求證:△CDE為等腰三角形;(2)若CD=3,BC=4,求AD的長和⊙O的半徑.
解:(1)∵∠EDC+∠EDA=180°、∠B+∠EDA=180°,
∴∠B=∠EDC,
又∵AB=AC,
∴∠B=∠C,
∴∠EDC=∠C,
∴ED=EC;
(2)連接AE,
∵AB是直徑,
∴AE⊥BC,
又∵AB=AC,
∴BC=2EC=4,
∵∠B=∠EDC、∠C=∠C,
∴△ABC∽△EDC,
∴AB:EC=BC:CD,
又∵CD=3、BC=4,
∴AB:2=4:3,
∴AB=8,
∴AC=AB=8,AD=AC﹣CD=5,
∴⊙O的半徑為4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∴P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長BP交邊AD于點F,交CD的延長線于點G.
(1)求證:△APB≌△APD;
(2)已知DF:FA=1:2,設線段DP的長為x,線段PF的長為y.
①求y與x的函數(shù)關系式;
②當x=6時,求線段FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是的中點,CE⊥AB于點E,BD交CE于點F.
(1)求證:CF=BF;
(2)若CD=5,AC=12,求⊙O的半徑和CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.
(1)畫出△ABC關于x軸的對稱圖形△A1B1C1;
(2)將△A1B1C1沿x軸方向向左平移4個單位得到△A2B2C2,畫出△A2B2C2并寫出頂點A2,B2,C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的三邊分別切⊙O于D,E,F(xiàn).
(1)若∠A=40°,求∠DEF的度數(shù);
(2)AB=AC=13,BC=10,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,∠AOB=30°,OP=8,點M和點N分別是射線OA和射線OB上的動點,則△PMN周長的最小值為( 。
A. 5B. 6C. 8D. 10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國派遣三艘海監(jiān)船在南海保護中國漁民不受菲律賓的侵犯.在雷達顯示圖上,標明了三艘海監(jiān)船的坐標為、、,(單位:海里)三艘海監(jiān)船安裝有相同的探測雷達,雷達的有效探測范圍是半徑為的圓形區(qū)域(只考慮在海平面上的探測).
(1)若在三艘海監(jiān)船組成的區(qū)域內(nèi)沒有探測盲點,則雷達的有效探測半徑至少為________海里;
(2)某時刻海面上出現(xiàn)一艘菲律賓海警船,在海監(jiān)船測得點位于南偏東方向上,同時在海監(jiān)船測得位于北偏東方向上,海警船正以每小時海里的速度向正西方向移動,我海監(jiān)船立刻向北偏東方向運動進行攔截,問我海監(jiān)船至少以多少速度才能在此方向上攔截到菲律賓海警船?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com