【題目】如圖為一段圓弧形彎道,彎道長(zhǎng)12π米,圓弧所對(duì)的圓心角是81°.
(1)用直尺和圓規(guī)作出圓弧所在的圓心O;(不寫(xiě)作法,保留作圖痕跡)
(2)求這段圓弧的半徑R.

【答案】
(1)解:如圖,點(diǎn)O即為所求點(diǎn);


(2)解:根據(jù)題意得: =12π,

解得:R= ,

答:這段圓弧的半徑為


【解析】(1)弧上任取三點(diǎn)A、B、C,連結(jié)AB、BC,分別作AB和BC的垂直平分線,兩垂直平分線的交點(diǎn)為點(diǎn)O;(2)根據(jù)弧長(zhǎng)公式列出關(guān)于R的方程,解之可得.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解垂徑定理的相關(guān)知識(shí),掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧,以及對(duì)圓心角、弧、弦的關(guān)系的理解,了解在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)為(0,3),則方程ax2+bx+c=0(a≠0)的解為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖△ABC中,∠BAC=78°,AB=AC,P為△ABC內(nèi)一點(diǎn),連BP,CP,使∠PBC=9°,∠PCB=30°,連PA,則∠BAP的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在6×8的網(wǎng)格圖中,每個(gè)小正方形邊長(zhǎng)均為1,原點(diǎn)O和△ABC的頂點(diǎn)均為格點(diǎn).

(1)以O(shè)為位似中心,在網(wǎng)格圖中作△A′B′C′,使△A′B′C′與△ABC位似,且位似比為1:2;(保留作圖痕跡,不要求寫(xiě)作法和證明)
(2)若點(diǎn)C和坐標(biāo)為(2,4),則點(diǎn)A′的坐標(biāo)為( , ),點(diǎn)C′的坐標(biāo)為( , ),SA′B′C′:SABC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為1的正五邊形ABCDE,頂點(diǎn)A、B在半徑為1的圓上,其它各點(diǎn)在圓內(nèi),將正五邊形ABCDE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E第一次落在圓上時(shí),則點(diǎn)C轉(zhuǎn)過(guò)的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸為直線x= ,且經(jīng)過(guò)點(diǎn)(2,0),下列說(shuō)法: ①abc<0;
②a+b=0;
③4a+2b+c<0;
④若(﹣2,y1),(﹣3,y2)是拋物線上的兩點(diǎn),則y1<y2
其中說(shuō)法正確的是(

A.①②④
B.③④
C.①③④
D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市自來(lái)水公司為鼓勵(lì)居民節(jié)約用水,采取按月用水量分段收費(fèi)辦法,若某戶居民應(yīng)交交費(fèi)(元)與用水量(噸)的函數(shù)關(guān)系如圖所示。

(1)分別寫(xiě)出當(dāng)時(shí),的函數(shù)關(guān)系式;

(2)若某用戶該月用水21噸,則應(yīng)交水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC 中,AB=AC,∠BAC=90°,D BC 上一點(diǎn),EC⊥BC,EC=BD,DF=FE.

求證:(1)△ABD≌△ACE;

(2)AFDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB:y=﹣x﹣b分別與x,y軸交于A(6,0)、B兩點(diǎn),過(guò)點(diǎn)B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.

(1)求點(diǎn)B的坐標(biāo);
(2)求直線BC的解析式;
(3)直線EF:y=2x﹣k(k≠0)交AB于E,交BC于點(diǎn)F,交x軸于點(diǎn)D,是否存在這樣的直線EF,使得SEBD=SFBD?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案