【題目】如圖,在直角坐標(biāo)平面內(nèi),拋物線經(jīng)過原點(diǎn)、點(diǎn),又與軸正半軸相交于點(diǎn),點(diǎn)是線段上的一點(diǎn),過點(diǎn),與拋物線交于點(diǎn),且點(diǎn)在第一象限內(nèi).

備用圖

1)求拋物線的表達(dá)式;

2)若,求點(diǎn)的坐標(biāo);

3)過點(diǎn)軸,分別交直線軸于點(diǎn),若的面積等于的面積的倍,求的值.

【答案】1;(2;(3

【解析】

(1)過點(diǎn)B作BH⊥x軸,垂足為點(diǎn)H,根據(jù)等腰直角三角形的性質(zhì)可求點(diǎn)A(4,0),用待定系數(shù)法可求拋物線的表達(dá)式;

(2)根據(jù)平行線的性質(zhì)可得BM//OA,可求點(diǎn)M坐標(biāo),用待定系數(shù)法可求直線BO,直線AB,直線PM的解析式,即可求點(diǎn)P坐標(biāo);

(3)延長(zhǎng)MP交x軸于點(diǎn)D,作PG⊥MN于點(diǎn)G,根據(jù)等腰直角三角形的性質(zhì)可得AC=CN,PG=NG,根據(jù)銳角三角函數(shù)可得tan∠BOA=3=tan∠MPG=,可得MG=3PG=3NG,根據(jù)面積關(guān)系可求的值.

解:(1

過點(diǎn)軸,垂足為點(diǎn),

,

,

拋物線過原點(diǎn)、點(diǎn)

設(shè)拋物線的表達(dá)式為

拋物的線表達(dá)式為

2

`

設(shè)在拋物線

直線經(jīng)過點(diǎn)、直線的表達(dá)式為

且直線過點(diǎn)直線的表達(dá)式為

直線經(jīng)過點(diǎn)、直線的表達(dá)式為

3)延長(zhǎng)軸于點(diǎn),作,垂足為點(diǎn)

,

,

設(shè),則

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是有公共頂點(diǎn)的直角三角形,,點(diǎn)P為射線BD,CE的交點(diǎn).

1)如圖1,若是等腰三角形,求證:;

2)如圖2,若,問:(1)中的結(jié)論是否成立?請(qǐng)說明理由.

3)在(1)的條件下,若,,若把繞點(diǎn)A旋轉(zhuǎn),當(dāng)時(shí),求PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一個(gè)函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當(dāng)1≤x≤1 時(shí),1≤y≤1,則稱這個(gè)函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點(diǎn) A(1,1)和點(diǎn) B(1,1),則 a 的取值范圍是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在全校學(xué)生中開展了地球我們的家園為主題的環(huán)保征文比賽,評(píng)選出一、二、三等獎(jiǎng)和優(yōu)秀獎(jiǎng)。根據(jù)獎(jiǎng)項(xiàng)的情況繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

(1)求校獲獎(jiǎng)的總?cè)藬?shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)求在扇形統(tǒng)計(jì)圖中表示“二等獎(jiǎng)” 的扇形的圓心角的度數(shù);

(3)獲得一等獎(jiǎng)的4名學(xué)生中有3男1女,現(xiàn)打算從中隨機(jī)選出2名學(xué)生參加頒獎(jiǎng)活動(dòng),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率﹒

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,分別是邊、上的中線,交于點(diǎn),若,,則的面積等于____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊ABC的邊長(zhǎng)為8,以AB為直徑的圓交BC于點(diǎn)F.以C為圓心,CF長(zhǎng)為半徑作圖,D是⊙C上一動(dòng)點(diǎn),EBD的中點(diǎn),當(dāng)AE最大時(shí),BD的長(zhǎng)為( 。

A. B. C. D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y = x2+bx+c過點(diǎn)A (-1,2),且關(guān)于y軸對(duì)稱,點(diǎn)C與點(diǎn)B(a,0)(a1)關(guān)于原點(diǎn)對(duì)稱,直線AC交拋物線于點(diǎn)D

1)求此拋物線的解析式;

2)連接OA,BD,當(dāng)OA//BD時(shí),求a的值;

3)若直線AC交拋物線EF兩點(diǎn)(點(diǎn)E在點(diǎn)F的左側(cè)),且EA=DF,求直線AC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育文化用品商店購(gòu)進(jìn)籃球和排球共200個(gè),進(jìn)價(jià)和售價(jià)如下表全部銷售完后共獲利潤(rùn)2600元.

1)求商店購(gòu)進(jìn)籃球和排球各多少個(gè)?

2)王老師在元旦節(jié)這天到該體育文化用品商店為學(xué)校買籃球和排球各若干個(gè)(兩種球都買了),商店在他的這筆交易中獲利100元王老師有哪幾種購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知二次函數(shù),請(qǐng)你化成的形式_______,并在直角坐標(biāo)系中畫出的圖像(列表、描點(diǎn)、連線);

2)如果是函數(shù)圖像上的兩點(diǎn),且,則________(填

3)若函數(shù)的圖像與軸沒有交點(diǎn),根據(jù)所畫圖像推斷,實(shí)數(shù)的取值范圍為__________

解:①、列表

0

0

0

②描點(diǎn)、連線

查看答案和解析>>

同步練習(xí)冊(cè)答案