【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)O為AB中點(diǎn),點(diǎn)P為直線BC上的動(dòng)點(diǎn)(不與點(diǎn)B、點(diǎn)C重合),連接OC、OP,將線段OP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°,得到線段PQ,連接BQ.
(1)如圖1,當(dāng)點(diǎn)P在線段BC上時(shí),試猜想寫(xiě)出線段CP與BQ的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖2,當(dāng)點(diǎn)P在CB延長(zhǎng)線上時(shí),(1)中結(jié)論是否成立?(直接寫(xiě)“成立”或“不成立”即可,不需證明).
【答案】(1) BQ=CP.理由見(jiàn)解析;(2) 成立:PC=BQ, 理由見(jiàn)解析.
【解析】
(1)由∠ACB=90°,∠A=30°得到∠ABC=60°,根據(jù)直角三角形斜邊上中線性質(zhì)得到OB=OC,則可判斷△OCB、△CPH為等邊三角形,作輔助線PH∥AB交CO于H,證明△POH≌△QPB全等可得PH=QB= PC;
(2)與(1)的證明方法同樣得到△POH≌△QPB,可得PH=QB= PC。
解:(1)結(jié)論:BQ=CP.
理由:如圖1中,作PH∥AB交CO于H.
在Rt△ABC中,∵∠ACB=90°,∠A=30°,點(diǎn)O為AB中點(diǎn),
∴CO=AO=BO,∠CBO=60°,
∴△CBO是等邊三角形,
∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,
∴∠CHP=∠CPH=60°,
∴△CPH是等邊三角形,
∴PC=PH=CH,
∴OH=PB,
∵∠OPB=∠OPQ+∠QPB=∠OCB+∠COP,
∵∠OPQ=∠OCP=60°,
∴∠POH=∠QPB,
∵在△POH與△QPB中
,
∴△POH≌△QPB(SAS),
∴PH=QB,
∴PC=BQ.
(2)成立:PC=BQ.
理由:作PH∥AB交CO的延長(zhǎng)線于H.
在Rt△ABC中,∵∠ACB=90°,∠A=30°,點(diǎn)O為AB中點(diǎn),
∴CO=AO=BO,∠CBO=60°,
∴△CBO是等邊三角形,
∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,
∴∠CHP=∠CPH=60°,
∴△CPH是等邊三角形,
∴PC=PH=CH,
∴OH=PB,
∵∠POH=60°+∠CPO,∠QPO=60°+∠CPQ,
∴∠POH=∠QPB,
∵在△POH與△QPB中
,
∴△POH≌△QPB(SAS),
∴PH=QB,
∴PC=BQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】草莓是諸暨盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.
(1)求y與x的函數(shù)解析式
(2)設(shè)該水果銷售店試銷草莓獲得的利潤(rùn)為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形ABCD中,經(jīng)過(guò)對(duì)角線交點(diǎn)O的直線分別交AB、CD于點(diǎn)E、F.則圖中全等的三角形共有( )
A. 4對(duì) B. 5對(duì) C. 6對(duì) D. 8對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖將小球從斜坡的O點(diǎn)拋出,小球的拋出路線可以用二次函數(shù)y=ax2+bx刻畫(huà),頂點(diǎn)坐標(biāo)為(4,8),斜坡可以用y=x刻畫(huà).
(1)求二次函數(shù)解析式;
(2)若小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);
(3)求小球飛行過(guò)程中離坡面的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn),.將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)得,連接.
(1)求證:是等邊三角形;
(2)當(dāng)時(shí),試判斷的形狀,并說(shuō)明理由;
(3)探究:當(dāng)為多少度時(shí),是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程ax2+bx+c=0兩根為x1,x2,x2+x1=﹣,x2.x1=.如果拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(1,2),若abc=4,且a≥b≥c,則|a|+|b|+|c|的最小值為( 。
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有長(zhǎng)為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長(zhǎng)度 a 為 10m)圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關(guān)系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長(zhǎng)是多少米?
(3) 當(dāng) AB 的長(zhǎng)是多少米時(shí),圍成的花圃的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家規(guī)定“中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí)”.為此,某市就“你每天在校體育活動(dòng)時(shí)間是多少”的問(wèn)題隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖(部分)如圖所示,其中分組情況是:
A組:;B組:
C組:D組:
請(qǐng)根據(jù)上述信息解答下列問(wèn)題:
(1)C組的人數(shù)是;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在組內(nèi);
(3)若該轄區(qū)約有24 000名初中學(xué)生,請(qǐng)你估計(jì)其中達(dá)國(guó)家規(guī)定體育活動(dòng)時(shí)間的人約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出以下結(jié)論:①abc<0 ②b2﹣4ac>0 ③4b+c<0 ④若B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2⑤當(dāng)﹣3≤x≤1時(shí),y≥0,
其中正確的結(jié)論是(填寫(xiě)代表正確結(jié)論的序號(hào))__________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com