【題目】如圖,在平面直角系xOy中,直線ABx軸正半軸于點(diǎn)A,交y軸負(fù)半軸于點(diǎn)B,B點(diǎn)的坐標(biāo)為B0,﹣6),點(diǎn)C在線段OA上,將△ABC沿直線BC翻折,點(diǎn)Ay軸上的點(diǎn)D0,4),恰好重合.

1)求A點(diǎn)、C點(diǎn)的坐標(biāo);

2)在y軸是否存在一點(diǎn)H,使得△HAB和△ABC的面積相等?若存在,求出滿足條件的點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說明理由

3)已知點(diǎn)E03),P是直線BC上一動(dòng)點(diǎn)(P不與B重合),連接PD、PE,求△PDE周長(zhǎng)的最小值,并求出此BP長(zhǎng).

【答案】1A8,0),C3,0);(2)存在,(0,﹣),(0,﹣);(3PDE的周長(zhǎng)的最小值+1,.

【解析】

1)由折疊的性質(zhì)得BDAB10ACDC,由勾股定理可求AO8,AC5,即可求點(diǎn)A,點(diǎn)C坐標(biāo);

2)△HAB和△ABC的面積相等,則點(diǎn)H在直線m、ny軸的交點(diǎn)上,求出直線m、n的表達(dá)式即可求解;

3)連接AEBC于點(diǎn)P,則此時(shí)△PDE的周長(zhǎng)取得最小值,即可求解.

解:(1)∵B0,﹣6),D04),

BD10

∵將△ABC沿直線BC翻折,

BDAB10,ACDC

AO8,

∴點(diǎn)A80

CD2DO2+CO2,

AC216+8AC2,

AC5,

CO3,

∴點(diǎn)C3,0

2)過點(diǎn)C作直線mAB,

B點(diǎn)的坐標(biāo)為B0,﹣6),點(diǎn)A坐標(biāo)(8,0),

∴直線AB的解析式為:yx6

∵直線mAB,

∴設(shè)直線m的解析式為:yx+b,且過點(diǎn)C,

0×3+b,

b=﹣

直線m的解析式為:yx

在直線AB下方與直線m等距離處作直線n,

則直線n的表達(dá)式為:yx,

∵△HAB和△ABC的面積相等,則點(diǎn)H在直線m、n與坐標(biāo)軸的交點(diǎn)上,

∴點(diǎn)H坐標(biāo)為(0,﹣),(0,﹣);

3)∵點(diǎn)A與點(diǎn)D關(guān)于BC對(duì)稱,

∴連接AEBC于點(diǎn)P

則此時(shí)△PDE的周長(zhǎng)取得最小值,

∵點(diǎn)A8,0),點(diǎn)E0,3

AE

∴△PDE的周長(zhǎng)的最小值=DE+DP+PE+1

由點(diǎn)E、A的坐標(biāo),同理可得:直線AE的表達(dá)式為:y=﹣x+3,

同理直線BC的表達(dá)式為:y2x6,

∴點(diǎn)P,

∵點(diǎn)B0,﹣6

BP.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,對(duì)角線的垂直平分線相交于點(diǎn),與相交于點(diǎn),連接。

1)求證:四邊形是菱形;

2)若,求的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長(zhǎng),分別至點(diǎn)E和點(diǎn)F,且使BE=DF.

(1)求證:四邊形AECF是菱形;

(2)若AC=4,BE=1,直接寫出菱形AECF的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某九年級(jí)制學(xué)校圍繞每天30分鐘的大課間,你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))的問題,對(duì)在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問題:

(1)該校對(duì)多少學(xué)生進(jìn)行了抽樣調(diào)查?

(2)本次抽樣調(diào)查中,最喜歡籃球活動(dòng)的有多少?占被調(diào)查人數(shù)的百分比是多少?

(3)若該校九年級(jí)共有200名學(xué)生,圖2是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)你估計(jì)全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上點(diǎn)與點(diǎn)之間的距的距離為個(gè)單位長(zhǎng)度,點(diǎn)在原點(diǎn)的左側(cè),到原點(diǎn)的距離為個(gè)單位長(zhǎng)度,點(diǎn)在點(diǎn)的右側(cè),點(diǎn)表示的數(shù)與點(diǎn)表示的數(shù)互為相反數(shù),動(dòng)點(diǎn)點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)移動(dòng),設(shè)移動(dòng)時(shí)間為秒.

1)點(diǎn)表示的數(shù)為 ,點(diǎn)表示的數(shù)為 ,點(diǎn)表示的數(shù)為

2)用含的代數(shù)式分別表示點(diǎn)到點(diǎn)和點(diǎn)的距離:

3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)到達(dá)點(diǎn)后,立即以同樣的速度返回點(diǎn),在點(diǎn)開始運(yùn)動(dòng)后,當(dāng)兩點(diǎn)之間的距離為個(gè)單位長(zhǎng)度時(shí),求此時(shí)點(diǎn)表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,則下列條件不能判定四邊形ABCD是平行四邊形的是  

A. , B. ,

C. D. ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),四邊形ABCD中,ABCD,∠ADC=90°,PA點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,按A→B→C→D的順序在邊上勻速運(yùn)動(dòng),設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖(2)所示,當(dāng)P運(yùn)動(dòng)到BC中點(diǎn)時(shí),△PAD的面積為( )

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在直線跑道上同起點(diǎn)同終點(diǎn)同方向勻速跑步500米,先到終點(diǎn)的人原地體息.已知甲先出發(fā),在跑步過程中,甲、乙兩人的距離與乙出發(fā)的時(shí)間之間的關(guān)系如圖所示,給出的下結(jié)論:①,②,③,其中正確的是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,拋物線y軸交于點(diǎn)C,與x軸交于AB兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0)OC3OB.

(1)求拋物線的解析式;

(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;

(3)若點(diǎn)E軸上,點(diǎn)P在拋物線上.是否存在以A,C,EP為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案