【題目】如圖,在中,∠C=90°,AC=BC,點OAB上,以O為圓心,OA為半徑作⊙O,與BC相切于點D,且交AB于點E

1)連結(jié)AD,求證:AD平分∠CAB;

2)若BE=1,求陰影部分的面積.

【答案】1)見解析;(2

【解析】

1)連接OD,證ODAC,求出∠OAD=ODA=CAD即可;

2)證明BOD是等腰直角三角形,分別求出BOD和扇形EOD的面積即可.

1)證明:如圖,連結(jié)OD

∵⊙OBC相切于點D,

ODBC,

即∠ODB=90°

又∵∠C=90°,

ODAC,

∴∠ODA=CAD

在⊙O中,OA=OD,

∴∠ODA=OAD

∴∠OAD=CAD,

AD平分∠CAB

2)解:在RtABC中,∠C=90°,AC=BC,

∴∠B=45°

∴∠BOD=45°,

∴△BOD是等腰直角三角形,

OB=OD,BD=OD,

設(shè)⊙O的半徑為r,則OD=BD=r,,

r=1,

=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BDCF成立.

1)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)θθ90°)時,如圖2BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

2)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BDCF于點G, ACBG的交點為M.求證:EM:DM=CG:AC

(3)(2)小題的條件下,當(dāng)AB=4,AD=時,求四邊形ABGF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABCBC邊上一點,連接AD,作ABD的外接圓,將ADC沿直線AD折疊,點C的對應(yīng)點E落在⊙O上.

1)求證:AEAB

2)填空:

①當(dāng)∠CAB90°cosADBBE2時,邊BC的長為   

②當(dāng)∠BAE   時,四邊形AOED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點右側(cè)半圓上的一個動點,點左側(cè)半圓的中點,的切線,切點為,連接于點.點為射線上一動點,連接,,

1)當(dāng)時, 求證:

2)若的半徑為,請?zhí)羁眨?/span>

當(dāng)四邊形為正方形時,

當(dāng) 時, 四邊形為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:(要求保留作圖痕跡,不寫作法)

1)作△ABCBC邊上的垂直平分線EF(交AC于點E,交BC于點F);

2)連結(jié)BE,若AC=10,AB=6,求△ABE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB12AD15,ECD上的點,將△ADE沿折痕AE折疊,使點D落在BC邊上點F處,點P是線段CB延長線上的動點,連接PA,若△PAF是等腰三角形,則PB的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca0)的圖象如圖所示,對稱軸為直線x=﹣1,下列結(jié)論不正確的是( 。

A.b24acB.abc0

C.ac0D.am2+bmabm為任意實數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

小紅遇到這樣一個問題:如圖1中,,,AD是中線,求AD的取值范圍.她的做法是:延長ADE,使,連接BE,證明,經(jīng)過推理和計算使問題得到解決.

請回答:(1)小紅證明的判定定理是:__________________________________________;

2AD的取值范圍是________________________

方法運用:

3)如圖2,AD的中線,在AD上取一點F,連結(jié)BF并延長交AC于點E,使,求證:

4)如圖3,在矩形ABCD中,,在BD上取一點F,以BF為斜邊作,且,點GDF的中點,連接EG,CG,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國著名數(shù)學(xué)家華羅庚說過“數(shù)缺形時少直觀,形少數(shù)時難入微”;數(shù)形結(jié)合是解決數(shù)學(xué)問題的重要思想方法.例如,代數(shù)式的幾何意義是數(shù)軸上所對應(yīng)的點與2所對應(yīng)的點之間的距離;因為,所以的幾何意義就是數(shù)軸上所對應(yīng)的點與所對應(yīng)的點之間的距離

. 發(fā)現(xiàn)問題:代數(shù)式的最小值是多少?

. 探究問題:如圖,點分別表示的是 ,

的幾何意義是線段的長度之和

∴當(dāng)點在線段上時,;當(dāng)點點在點的左側(cè)或點的右側(cè)時

的最小值是3.

.解決問題:

.的最小值是 ;

.利用上述思想方法解不等式:

.當(dāng)為何值時,代數(shù)式的最小值是2.

查看答案和解析>>

同步練習(xí)冊答案