【題目】市園林處為了對一段公路進行綠化,計劃購買,兩種風景樹共900棵.,兩種樹的相關信息如下表:
品種 項目 | 單價(元棵) | 成活率 |
80 | ||
100 |
若購買種樹棵,購樹所需的總費用為元.
(1)求與之間的函數關系式;
(2)若購樹的總費用不超過82 000元,則購種樹不少于多少棵?
(3)若希望這批樹的成活率不低于,且使購樹的總費用最低,應選購,兩種樹各多少棵?此時最低費用為多少?
科目:初中數學 來源: 題型:
【題目】2019年10月1日,中華人民共和國成立70周年,成都市民通過各種方式觀看了國慶閱兵直播.武侯區(qū)某街道辦為了解居民的“觀看方式”和 “最喜歡的分列式方隊”的情況,隨機調查了本街道部分居民(每位被調查者需完成以上兩個方面的問題),并將調查結果繪制成了如下兩幅不完整的統(tǒng)計圖,其中通過“電視端”“方式觀看的居民有320人.
請根據以上信息,解答下列問題:
(1)求本次隨機調查的總人數;
(2)請補全條形統(tǒng)計圖;
(3)若武侯區(qū)該街道居民約有60000人,試估計其中最喜歡“護旗方隊”的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知以E(3,0)為圓心,5為半徑的☉E與x軸交于A,B兩點,與y軸交于C點,拋物線y=ax2+bx+c(a≠0)經過A,B,C三點,頂點為F.
(1)求A,B,C三點的坐標;
(2)求拋物線的解析式及頂點F的坐標;
(3)已知M為拋物線上的一動點(不與C點重合),試探究:①若以A,B,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標;
②若探究①中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF與☉E的位置關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某次大型活動,組委會啟用無人機航拍活動過程,在操控無人機時應根據現場狀況調節(jié)高度,已知無人機在上升和下降過程中速度相同,設無人機的飛行高度為y(米),操控無人機的時間為x(分),y與x之間的函數圖像如圖所示.
(1)無人機的速度為________米/分;
(2)求線段BC所表示的y與x之間函數表達式;
(3)無人機在50米上空持續(xù)飛行時間為_________分.(直接填結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下表是某中學足球冠軍杯第一階段組賽不完整的積分表.組共個隊,每個隊分別與其它個隊進行主客場比賽各一場,即每個隊都要進行場比賽.每隊每場比賽積分都是自然數.(總積分勝場積分平場積分負場積分)
球隊 | 比賽場次 | 勝場次數 | 平場次數 | 負場次數 | 總積分 |
戰(zhàn)神隊 | |||||
旋風隊 | |||||
龍虎隊 | |||||
夢之隊 |
本次足球小組賽中,平一場積___________分,夢之隊總積分是___________分.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《數》是中國數學史上的重要著作,比我們熟知的漢代《九章算術》還要古老,保存了許多古代算法的最早例證(比如“勾股”概念),改變了我們對周秦數學發(fā)展水平的認識.文中記載“有婦三人,長者一日織五十尺,中者二日織五十尺,少者三日織五十尺,今威有功五十尺,問各受幾何?”譯文:“三位女人善織布,姥姥1天織布50尺,媽媽2天織布50尺,妞妞3天織布50尺.如今三人齊上陣,共同完成50尺織布任務,請問每人織布幾尺?”設三人一共用了x天完成織布任務,則可列方程為________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數的圖象與直線y=x-2交于點A(a,1).
(1)求a,k的值;
(2)已知點P(m,0)(1≤m< 4),過點P作平行于y軸的直線,交直線y=x-2于點M (x1,y1),交函數的圖象于點N(x1,y2),結合函數的圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖1,正方形ABCD,△CEF為等腰直角三角形,其中∠CFE=90°,CF=EF,連接CE,AE,AC,點G是AE的中點,連接FG
(1)用等式表示線段BF與FG的數量關系是 .
(2)若將△CEF繞頂點C旋轉,使得點F恰好在線段AC上,并且點E在線段AC的上方,點G仍是AE的中點,連接FG,DF
①在圖2中依據題意補全圖形;
②求證:DF=FG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在某次訓練中,甲、乙兩名射擊運動員各射擊10發(fā)子彈的成績統(tǒng)計圖如圖所示,對于本次訓練,有如下結論:①S甲2>S乙2;②S甲2<S乙2;③甲的射擊成績比乙穩(wěn)定;④乙的射擊成績比甲穩(wěn)定,由統(tǒng)計圖可知正確的結論是( )
A.①③ B.①④ C.②③ D.②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com