15.在平面直角坐標(biāo)系中,已知點(diǎn)P在第二象限,距離x軸3個單位長度,距離y軸2個單位長度,則點(diǎn)P的坐標(biāo)為(-2,3).

分析 根據(jù)第二象限內(nèi)點(diǎn)的橫坐標(biāo)是負(fù)數(shù),縱坐標(biāo)是正數(shù),點(diǎn)到x軸的距離等于縱坐標(biāo)的長度,到y(tǒng)軸的距離等于橫坐標(biāo)的長度解答.

解答 解:∵點(diǎn)P在第二象限,距離x軸3個單位長度,距離y軸2個單位長度,
∴點(diǎn)P的橫坐標(biāo)為-2,縱坐標(biāo)為3,
∴點(diǎn)P的坐標(biāo)為(-2,3).
故答案為:(-2,3).

點(diǎn)評 本題考查了點(diǎn)的坐標(biāo),熟記點(diǎn)到x軸的距離等于縱坐標(biāo)的長度,到y(tǒng)軸的距離等于橫坐標(biāo)的長度是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.A、B兩座城市之間有一條高速公路,甲、乙兩輛汽車同時(shí)分別從這條路兩端的入口處駛?cè),甲車駛往B城,乙車駛往A城,甲車在高速公路上勻速行駛,距B城高速公路入口處的距離y(千米)與時(shí)間x(時(shí))之間的關(guān)系如圖.
(1)A、B兩座城市之間的距離為300千米,點(diǎn)M表示的意義是當(dāng)行駛了2小時(shí)時(shí),甲車距離B城高速公路入口120千米;
(2)求y與x的關(guān)系式;
(3)已知乙車以60千米/時(shí)的速度勻速行駛,與兩車相遇后即可90千米/時(shí)的速度勻速駛向A 城,請?jiān)趫D中畫出乙車行駛的路程y(千米)與時(shí)間x(時(shí))之間關(guān)系的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.如圖,在矩形ABCD中,AD=9cm,AB=3cm,將其折疊,使點(diǎn)D與點(diǎn)B重合,則重疊部分(△BEF)的面積為7.5cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.解不等式組$\left\{\begin{array}{l}{2x-2<3x①}\\{\frac{x+2}{5}-\frac{x-1}{4}≥\frac{1}{2}②}\end{array}\right.$,并在數(shù)軸上把它的解集表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,先將三角形ABC向左平移3個單位長度,再向下平移4個單位長度,得到三角形A1B1C1
(1)畫出經(jīng)過兩次平移后的圖形,并寫出A1,B1,C1的坐標(biāo);
(2)已知三角形ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),若點(diǎn)P隨三角形ABC一起平移,請寫出平移后點(diǎn)P的對應(yīng)點(diǎn)P1的坐標(biāo);
(3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.汽車由吉安駛往相距220km的南昌,它的平均速度為100km/h,則汽車距南昌的路程S(km)關(guān)于行駛的時(shí)間t(h)的關(guān)系式為s=220-100t.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖1,若分別以△ABC和AC、BC兩邊為直角邊向外側(cè)作等腰直角△ACD、△BCE,則稱這兩個等腰直角三角形為外展雙葉等腰直角三角形.
(1)發(fā)現(xiàn):如圖2,當(dāng)∠ACB=90°,求證:△ABC與△DCE的面積相等.
(2)引申:如果∠ACB≠90°時(shí).(1)中結(jié)論還成立嗎?若成立,請結(jié)合圖1給出證明;若不成立,請說明理由.
(3)運(yùn)用:①如圖3,分別以△ABC的三邊為邊向外側(cè)作四邊形ABED、BCFG和ACIH為正方形,則稱這三個正方形為外展三葉正方形.已知△ABC中,AB=4,BC=3,當(dāng)△ABC滿足∠ACB=90°時(shí),圖中△ADH、△BEF、△CGI的面積和有最大值是18②如圖4,在△ADH、△BEF、△CGI的面積和取最大值時(shí),試寫出S△DEF、S△GFE、S正方形AHIC三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,直線l1與l2相交于點(diǎn)P,l1的解析式為y=2x+3,點(diǎn)P的橫坐標(biāo)為-1,且l2交y軸于點(diǎn)A(0,-1).
(1)求直線l2的函數(shù)解析式;
(2)求這兩條直線與y軸圍成的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.若直線y=-3x+6與兩坐標(biāo)軸的交點(diǎn)分別是A、B,則△AOB的面積是6.

查看答案和解析>>

同步練習(xí)冊答案