【題目】如圖1是個三角形,分別連接這個三角形三邊中點(diǎn)得到圖2,再分別連接圖2中間小三角形三邊的中點(diǎn)得到圖3.
圖1中有_ __個三角形,圖2中有 __個三角形,圖3 中有 __個三角形;
按上面的方法繼續(xù)下去,第個圖形有________個三角形;(用含的式子表示)
當(dāng)時,圖形中有多少個三角形?
【答案】(1)1;5;9(2)4n3(3)8073個
【解析】
(1)首先根據(jù)所給的圖形,正確數(shù)出三角形的個數(shù);
(2)根據(jù)(1)中數(shù)的過程中,就能夠發(fā)現(xiàn)在前一個圖的基礎(chǔ)上依次多4個.
(3)代入n=2019求得答案即可.
(1)圖①中有1個三角形,圖②中有5個三角形,圖③中有9個三角形;
故答案為:1,5,9;
(2)∵發(fā)現(xiàn)每個圖形都比起前一個圖形依次多4個三角形,
∴第n個圖形中有1+4(n1)=4n3個三角形.
故答案為:4n3.
(3)當(dāng)n=2019時,4n3=4×20193=8073
答:當(dāng)n=2019時,圖形中有8073個三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了計算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點(diǎn)A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點(diǎn)B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊長為6,點(diǎn)A、C分別在x軸,y軸的正半軸上,點(diǎn)D(2,0)在OA上,P是OB上一動點(diǎn),則PA+PD的最小值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形 ABCD 的對角線交于點(diǎn) E,且 AE=EC,BE=ED,以 AD 為直徑的半圓過點(diǎn) E,圓心 為 O.
(1)如圖①,求證:四邊形 ABCD 為菱形;
(2)如圖②,若 BC 的延長線與半圓相切于點(diǎn) F,且直徑 AD=6,求弧AE 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點(diǎn)B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點(diǎn)C,使AC=AB;
②作∠ABM 的角平分線交AC于D點(diǎn);
③在射線CM上作一點(diǎn)E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC底邊BC上的高為16 cm,當(dāng)BC的長x(cm)從小到大變化時,△ABC的面積y(cm2)也隨之發(fā)生變化.
(1)在這個變化過程中,常量是________,自變量是________,因變量是_________;
(2)寫出y與x之間的關(guān)系式為_______________;
(3)當(dāng)x=5 cm時,y=________cm2;當(dāng)x=15 cm時,y=________cm2;y隨x的增大而__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給出下列四個條件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,從中任選三個條件能使△ABC≌△DEF的共有( )
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小淇在說明 “直角三角形斜邊上的中線等于斜邊的一半”是真命題,部分思路如下:如圖,在∠ACB內(nèi)做∠BCD=∠B,CD與AB相交于點(diǎn)D,…….請根據(jù)以上思路,完成證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸分別交于原點(diǎn)和點(diǎn),與對稱軸交于點(diǎn).矩形的邊在軸正半軸上,且,邊,與拋物線分別交于點(diǎn),.當(dāng)矩形沿軸正方向平移,點(diǎn),位于對稱軸的同側(cè)時,連接,此時,四邊形的面積記為;點(diǎn),位于對稱軸的兩側(cè)時,連接,,此時五邊形的面積記為.將點(diǎn)與點(diǎn)重合的位置作為矩形平移的起點(diǎn),設(shè)矩形平移的長度為.
(1)求出這條拋物線的表達(dá)式;
(2)當(dāng)時,求的值;
(3)當(dāng)矩形沿著軸的正方向平移時,求關(guān)于的函數(shù)表達(dá)式,并求出為何值時,有最大值,最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com