【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BD于點F,交⊙O于點D,AC與BD交于點G,點E為OC的延長線上一點,且∠OEB=∠ACD.
(1)求證:BE是⊙O的切線;
(2)求證:CD2=CGCA;
(3)若⊙O的半徑為,BG的長為,求tan∠CAB.
【答案】(1)見解析;(2)見解析;(3)tan∠CAB=.
【解析】
(1)由∠OEB=∠ACD,∠ACD=∠ABD知∠OEB=∠ABD,由OF⊥BD知∠BFE=90°,即∠OEB+∠EBF=90°,從而得∠ABD+∠EBF=90°,據此即可得證;
(2)連接AD,證△DCG∽△ACD即可得;
(3)先證△CDF∽△GCF得,再證△DCG∽△ABG得,據此知,由r=,BG=知AB=2r=5,根據tan∠CAB=tan∠ACO=可得答案.
(1)∵∠OEB=∠ACD,∠ACD=∠ABD,
∴∠OEB=∠ABD,
∵OF⊥BD,
∴∠BFE=90°,
∴∠OEB+∠EBF=90°,
∴∠ABD+∠EBF=90°,即∠OBE=90°,
∴BE⊥OB,
∴BE是⊙O的切線;
(2)連接AD,
∵OF⊥BD,
∴,
∴∠DAC=∠CDB,
∵∠DCG=∠ACD,
∴△DCG∽△ACD,
∴,
∴CD2=ACCG;
(3)∵OA=OB,
∴∠CAO=∠ACO,
∵∠CDB=∠CAO,
∴∠ACO=∠CDB,
而∠CFD=∠GFC,
∴△CDF∽△GCF,
∴,
又∵∠CDB=∠CAB,∠DCA=∠DBA,
∴△DCG∽△ABG,
∴,
∴,
∵r=,BG=,
∴AB=2r=5,
∴tan∠CAB=tan∠ACO==.
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個相等的實數根.其中正確結論是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地如圖,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數圖象;折線BCD表示轎車離甲地距離y(千米)與時間x(小時)之間的函數圖象;請根據圖象解答下到問題:
(1)貨車離甲地距離y(干米)與時間x(小時)之間的函數式為 ;
(2)當轎車與貨車相遇時,求此時x的值;
(3)在兩車行駛過程中,當轎車與貨車相距20千米時,求x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題為真命題的是( )
A.兩組身高數據的方差分別是,,那么乙組的身高比較整齊
B.“明天下雨”是必然事件
C.一組數據3,5,4,5,6,7的眾數、中位數和平均數都是5
D.為了解某燈管的使用壽命,可以采用普查的方式進行
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCO中,A(1,2),B(5,2),將ABCO繞O點逆時針方向旋轉90°到A′B′C′O的位置,則點B′的坐標是( 。
A.(﹣2,4)B.(﹣2,5)C.(﹣1,5)D.(﹣1,4)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經過點A、C,與AB交于點D.
(1)求拋物線的函數解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關于m的函數表達式;
②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數和二次函數圖象的頂點分別為M、N ,與x軸分別相交于A、B兩點(點A在點B的左邊)和C、D兩點(點C在點D的左邊),
(1))函數的頂點坐標為 ;當二次函數L1 ,L2 的值同時隨著的增大而增大時,的取值范圍是 ;
(2)當AD=MN時,求的值,并判斷四邊形AMDN的形狀(直接寫出,不必證明);
(3)當B,C是線段AD的三等分點時,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D、E分別是△ABC的邊AB、AC的中點,H、G是邊BC上的點,且HG=BC,S△ABC =12,則圖中陰影部分的面積為( )
A.6B.4C.3D.2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com