【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結(jié)AE、DE、DC.
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).

【答案】①證明:在△ABE和△CBD中,
∴△ABE≌△CBD(SAS);
②解:∵在△ABC中,AB=CB,∠ABC=90°,
∴∠BAC=∠ACB=45°,
由①得:△ABE≌△CBD,
∴∠AEB=∠BDC,
∵∠AEB為△AEC的外角,
∴∠AEB=∠ACB+∠CAE=30°+45°=75°,
則∠BDC=75°
【解析】①利用SAS即可得證;②由全等三角形對應(yīng)角相等得到∠AEB=∠CDB,利用外角的性質(zhì)求出∠AEB的度數(shù),即可確定出∠BDC的度數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解中學(xué)課堂教學(xué)質(zhì)量,我市教體局去年對全市中學(xué)教學(xué)質(zhì)量進(jìn)行調(diào)查方法是通過考試參加考試的為全市八年級學(xué)生,從中隨機抽取600名學(xué)生的英語成績進(jìn)行分析對于這次調(diào)查,以下說法不正確的是( )

A. 調(diào)查方法是抽樣調(diào)查 B. 全市八年級學(xué)生是總體

C. 參加考試的每個學(xué)生的英語成績是個體 D. 被抽到的600名學(xué)生的英語成績是樣本

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD交于點O,且DEAC,CEBD.

(1)求證:四邊形OCED是菱形;

(2)若∠BAC=30°,AC=4,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB∥CD.∠1=∠2,∠3=∠4,試說明AD∥BE.

解:∵AB∥CD(已知)

∴∠4=∠

∵∠3=∠4(已知)

∴∠3=∠

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(

即∠ =∠

∴∠3=∠

∴AD∥BE(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從下列四個條件:① , 中,任取三個為條件,余下的一個為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為豐富學(xué)生的校園生活,準(zhǔn)備從某體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元.
(1)購買一個足球,一個籃球各需多少元?
(2)根據(jù)學(xué)校的實際情況,需從該體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費用不超過5720元,這所中學(xué)最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖22,在∠AOB的兩邊OA,OB上分別取OM=ON,OD=OE,DNEM相交于點C.求證:點C在∠AOB的平分線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營A種品牌的玩具,購進(jìn)時間的單價是30元,但據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請用含x的代數(shù)式表示該玩具的銷售量;
(2)若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于450件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?
(3)該商場計劃將(2)中所得的利潤的一部分資金采購一批B種玩具并轉(zhuǎn)手出售,根據(jù)市場調(diào)查并準(zhǔn)備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付他庫保管費350元,請問商場如何使用這筆資金,采用哪種方案獲利較多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學(xué)生人數(shù)為 , 并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m= , n= , 表示“足球”的扇形的圓心角是度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機選出2名學(xué)生參加學(xué)校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

查看答案和解析>>

同步練習(xí)冊答案