【題目】如圖,正方形ABCD的邊長(zhǎng)為6,M是AB的中點(diǎn),P是BC邊上的動(dòng)點(diǎn),連結(jié)PM,以點(diǎn)P為圓心,PM長(zhǎng)為半徑作⊙P.當(dāng)⊙P與正方形ABCD的邊相切時(shí),BP的長(zhǎng)為_____.
【答案】或
【解析】
分兩種情形分別求解:如圖1中,當(dāng)⊙P與直線(xiàn)CD相切時(shí);如圖2中當(dāng)⊙P與直線(xiàn)AD相切時(shí).設(shè)切點(diǎn)為K,連接PK,則PK⊥AD,四邊形PKDC是矩形;
∵正方形ABCD的邊長(zhǎng)為6,M是AB的中點(diǎn),
∴BM=3
如圖1中,當(dāng)⊙P與直線(xiàn)CD相切時(shí),設(shè)PC=PM=x.
在Rt△PBM中,∵PM2=BM2+PB2,
∴x2=32+(6x)2,
∴x=,
∴PC=,BP=BCPC=.
如圖2中當(dāng)⊙P與直線(xiàn)AD相切時(shí).設(shè)切點(diǎn)為K,連接PK,則PK⊥AD,四邊形PKDC是矩形.
∴PM=PK=CD=2BM,
∴BM=3,PM=6,
∴BP=
綜上所述,BP的長(zhǎng)為或,
故填:或.
【點(diǎn)晴】
本題考查切線(xiàn)的性質(zhì)、正方形的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類(lèi)討論的思想思考問(wèn)題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是不倒翁的正視圖,不倒翁的圓形臉恰好與帽子邊沿PA、PB分別相切于點(diǎn)A、B,不倒翁的鼻尖正好是圓心O.
(1)若∠OAB=25°,求∠APB的度數(shù);
(2)若∠OAB=n°,請(qǐng)直接寫(xiě)出∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某中學(xué)利用“陽(yáng)光大課間”,組織學(xué)生積極參加豐富多彩的課外活動(dòng),學(xué)校成立了舞蹈隊(duì)、足球隊(duì)、籃球隊(duì)、毽子隊(duì)、射擊隊(duì)等,其中射擊隊(duì)在某次訓(xùn)練中,甲、乙兩名隊(duì)員各射擊10發(fā)子彈,成績(jī)用下面的折線(xiàn)統(tǒng)計(jì)圖表示:(甲為實(shí)線(xiàn),乙為虛線(xiàn))
(1)依據(jù)折線(xiàn)統(tǒng)計(jì)圖,得到下面的表格:
射擊次序(次) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲的成績(jī)(環(huán)) | 8 | 9 | 7 | 9 | 8 | 6 | 7 | 10 | 8 | |
乙的成績(jī)(環(huán)) | 6 | 7 | 9 | 7 | 9 | 10 | 8 | 7 | 10 |
其中________,________;
(2)甲成績(jī)的眾數(shù)是________環(huán),乙成績(jī)的中位數(shù)是________環(huán);
(3)請(qǐng)運(yùn)用方差的知識(shí),判斷甲、乙兩人誰(shuí)的成績(jī)更為穩(wěn)定?
(4)該校射擊隊(duì)要參加市組織的射擊比賽,已預(yù)選出2名男同學(xué)和2名女同學(xué),現(xiàn)要從這4名同學(xué)中任意選取2名同學(xué)參加比賽,請(qǐng)用列表或畫(huà)樹(shù)狀圖法,求出恰好選到1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,BC∥OA,BC=3,OA=6,AB=3
(1)直接寫(xiě)出點(diǎn)B的坐標(biāo)
(2)已知D.E分別為線(xiàn)段OC.OB上的點(diǎn),OD=5,OE=2BE,直線(xiàn)DE交x軸于點(diǎn)F,求直線(xiàn)DE的解析式
(3)在(2)的條件下,點(diǎn)M是直線(xiàn)DE上的一點(diǎn),在x軸上方是否存在另一個(gè)點(diǎn)N,使以O.D.M.N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一項(xiàng)工程,乙隊(duì)單獨(dú)完成所需的時(shí)間是甲隊(duì)單獨(dú)完成所需時(shí)間的2倍,若兩隊(duì)合作4天后,剩下的工作甲單獨(dú)做還需要6天完成.
(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天;
(2)若甲隊(duì)每天的報(bào)酬是1萬(wàn)元,乙隊(duì)每天的報(bào)酬是0.3萬(wàn)元,要使完成這項(xiàng)工程時(shí)的總報(bào)酬不超過(guò)9.6萬(wàn)元,甲隊(duì)最多可以工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】箱子里有4瓶牛奶,其中有一瓶是過(guò)期的.現(xiàn)從這4瓶牛奶中不放回地任意抽取2瓶.
(1)請(qǐng)用樹(shù)狀圖或列表法把上述所有等可能的結(jié)果表示出來(lái);
(2)求抽出的2瓶牛奶中恰好抽到過(guò)期牛奶的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購(gòu)買(mǎi)若干個(gè)籃球和足球(每個(gè)籃球的價(jià)格相同,每個(gè)足球的價(jià)格也相同).若購(gòu)買(mǎi)個(gè)籃球和個(gè)足球共需元,購(gòu)買(mǎi)個(gè)籃球和個(gè)足球共需元.
(1)購(gòu)買(mǎi)一個(gè)籃球、一個(gè)足球各需多少元?
(2)根據(jù)該中學(xué)的實(shí)際情況,需從體育用品商店一次性購(gòu)買(mǎi)籃球和足球共個(gè).要求購(gòu)買(mǎi)總金額不能超過(guò)元,則最多能購(gòu)買(mǎi)多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,過(guò)O點(diǎn)作OP⊥AB,交弦AC于點(diǎn)D,交⊙O于點(diǎn)E,且使∠PCA=∠ABC.
(1)求證:PC是⊙O的切線(xiàn);
(2)若∠P=60°,PC=2,求PE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),點(diǎn)E為⊙G上一動(dòng)點(diǎn),CF⊥AE于F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com