【題目】有一項工程,乙隊單獨完成所需的時間是甲隊單獨完成所需時間的2倍,若兩隊合作4天后,剩下的工作甲單獨做還需要6天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天;
(2)若甲隊每天的報酬是1萬元,乙隊每天的報酬是0.3萬元,要使完成這項工程時的總報酬不超過9.6萬元,甲隊最多可以工作多少天?
【答案】(1) 甲隊單獨完成這項工程需要12天,乙隊單獨完成這項工程需要24天;(2) 甲隊最多可以工作6天.
【解析】
(1)設甲隊單獨完成這項工程需要x天,則乙隊單獨完成這項工程需要2x天,根據(jù)甲隊完成的部分+乙隊完成的部分=整項工程(單位1),即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;
(2)設甲隊工作m天,則乙隊工作天,根據(jù)總報酬=每天的報酬×工作時間結(jié)合總報酬不超過9.6萬元,即可得出關于m的一元一次不等式,解之取其中最大值即可得出結(jié)論.
(1)設甲隊單獨完成這項工程需要x天,則乙隊單獨完成這項工程需要2x天,
依題意,得:=1,
解得:x=12,
經(jīng)檢驗,x=12是原方程的解,且符合題意,
∴2x=24.
答:甲隊單獨完成這項工程需要12天,乙隊單獨完成這項工程需要24天.
(2)設甲隊工作m天,則乙隊工作天,
依題意,得:m+0.3×≤9.6,
整理,得:0.4m≤2.4,
解得:m≤6.
答:甲隊最多可以工作6天.
科目:初中數(shù)學 來源: 題型:
【題目】定義:若一個三角形一條邊上的高等于這條邊長的一半,則稱該三角形為“半高”三角形,這條高稱為“半高”.
(1)如圖1,中,,,點在上,于點,于點,連接,求證: 是“半高”三角形;
(2)如圖2,是“半高”三角形,且邊上的高是“半高”,點在上,交于點,于點,于點.
①請?zhí)骄?/span>,,之間的等量關系,并說明理由;
②若的面積等于16,求的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對稱軸為.給出以下結(jié)論:①;②;③;④.其中,正確的結(jié)論有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】畫圖題:
(1)在如圖所示的方格紙中,經(jīng)過線段AB外一點C,不用量角器與三角尺,僅用直尺,畫線段AB的垂線CE和平行線CH.
(2)判斷CE、CH的位置關系是 .
(3)連接AC和BC,若小正方形的邊長為a,求三角形ABC的面積.(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,M是AB的中點,P是BC邊上的動點,連結(jié)PM,以點P為圓心,PM長為半徑作⊙P.當⊙P與正方形ABCD的邊相切時,BP的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為的等邊和邊長為的等邊,它們的邊,位于同一條直線上,開始時,點與點重合,固定不動,然后把自左向右沿直線平移,移出外(點與點重合)停止,設平移的距離為,兩個三角形重合部分的面積為,則關于的函數(shù)圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,連接AE.AC和BE相交于點O.
(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖2,P是線段BC上一動點(圖2),(不與點B、C重合),連接PO并延長交線段AE于點Q,QR⊥BD,垂足為點R.
①四邊形PQED的面積是否隨點P的運動而發(fā)生變化.若變化,請說明理由;若不變,求出四邊形PQED的面積;
②當線段PB的長為何值時,△PQR與△BOC相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點D,BC是⊙O的切線,E為BC的中點,連接BD、DE.
(1)求DE是⊙O的切線;
(2)設△CDE的面積為S1,四邊形ABED的面積為S2,若S2=5S1,求tan∠BAC的值;
(3)在(2)的條件下,連接AE,若⊙O的半徑為2,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com