【題目】如圖,在矩形中,,,點沿邊從點向點以的速度移動;同時,點從點沿邊向點以的速度移動,設(shè)點、移動的時間為.問:
當(dāng)為何值時的面積等于?
當(dāng)為何值時是直角三角形?
是否存在的值,使的面積最小,若存在,求此時的值及此時的面積;若不存在,請說明理由.
【答案】(1)當(dāng)或時,的面積等于;(2)當(dāng)的值為秒或秒或秒時,是直角三角形;(3)存在,當(dāng)時,有最小值.
【解析】
(1)根據(jù),,,△PBQ的面積等于8cm2,列出關(guān)于t的方程進(jìn)行求解即可;
(2)根據(jù)∠PDQ<90°,需要分兩種情況進(jìn)行討論:∠DPQ=90°或∠PQD=90°,分別求得t的值即可;
(3)根據(jù)AP=t,QB=2t,PB=6-t,可得S△DPQ=S梯形ABQD-S△APD-S△BPQ=,最后根據(jù)二次函數(shù)的性質(zhì),求得當(dāng)t=3時,S△DPQ有最小值27.
解:由題意得,,.
∵的面積等于,
∴,
∴解得或,
又∵,
∴當(dāng)或時,的面積等于.
當(dāng)時,點,分別與點,重合,
此時,,是直角三角形;
當(dāng)時,,,
∴,
∴,即,
∴,
解得:或,
故當(dāng)時,是直角三角形;當(dāng)時,點到達(dá)點、點到達(dá)點,此時,即是直角三角形.
綜上所述,當(dāng)的值為秒或秒或秒時,是直角三角形;
存在的值,使的面積最。
由題意得,,,
∴
,
,
,
又∵,
∴當(dāng)時,有最小值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相交于點D,E,F,且BF=BC.⊙O是△BEF的外接圓,∠EBF的平分線交EF于點G,交于點H,連接BD、FH.
(1)求證:△ABC≌△EBF;
(2)試判斷BD與⊙O的位置關(guān)系,并說明理由;
(3)若AB=1,求HGHB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y1=﹣2x+b的圖象交x軸于點A、與正比例函數(shù)y2=2x的圖象交于點M(m,m+2),
(1)求點M坐標(biāo);
(2)求b值;
(3)點O為坐標(biāo)原點,試確定△AOM的形狀,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師所留的作業(yè)中有這樣一個分式的計算題:,甲、乙兩位同學(xué)完成的過程分別如下:
甲同學(xué):
第一步
第二步
第三步
乙同學(xué):
第一步
第二步
第三步
老師發(fā)現(xiàn)這兩位同學(xué)的解答都有錯誤:
(1)甲同學(xué)的解答從第______步開始出現(xiàn)錯誤;乙同學(xué)的解答從第_____步開始出現(xiàn)錯誤;
(2)請重新寫出完成此題的正確解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由6個長為2,寬為1的小矩形組成的大矩形網(wǎng)格,小矩形的頂點稱為這個矩形網(wǎng)格的格點,由格點構(gòu)成的幾何圖形稱為格點圖形(如:連接2個格點,得到一條格點線段;連接3個格點,得到一個格點三角形;…),請按要求作圖(標(biāo)出所畫圖形的頂點字母).
(1)畫出4種不同于示例的平行格點線段;
(2)畫出4種不同的成軸對稱的格點三角形,并標(biāo)出其對稱軸所在線段;
(3)畫出1個格點正方形,并簡要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為( )
A. 8 B. 10 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司欲招聘廣告策劃人員一名,對甲、乙、丙三名候選人進(jìn)行三項素質(zhì)測試,他們的各項測試成績?nèi)缦卤硭荆?/span>
測試項目 | 測試成績 | ||
甲 | 乙 | 丙 | |
創(chuàng)新 | 72 | 85 | 67 |
綜合知識 | 50 | 74 | 70 |
語言 | 88 | 45 | 67 |
(1)如果根據(jù)三項測試的平均成績確定錄用人選,那么誰將被錄用?
(2)根據(jù)實際需要,公司將創(chuàng)新、綜合知識、語言三項測試得分按5:3:2的比例確定各人的測試成績,此時誰將被錄用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點A是x軸外的一點,若平面內(nèi)的點B滿足:線段AB的長度與點A到x軸的距離相等,則稱點B是點A的“等距點”.
(1)若點A的坐標(biāo)為(0,2),點(2,2),(1,),(,1)中,點A的“等距點”是_______________;
(2)若點M(1,2)和點N(1,8)是點A的兩個“等距點”,求點A的坐標(biāo);
(3)記函數(shù)()的圖象為,的半徑為2,圓心坐標(biāo)為.若在上存在點M,上存在點N,滿足點N是點M的“等距點”,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y= 與x軸交于點A(﹣2,0)和點B,與y軸交于點C(0,﹣3),經(jīng)過點A的射線AM與y軸相交于點E,與拋物線的另一個交點為F,且.
(1)求這條拋物線的表達(dá)式,并寫出它的對稱軸;
(2)求∠FAB的余切值;
(3)點D是點C關(guān)于拋物線對稱軸的對稱點,點P是y軸上一點,且∠AFP=∠DAB,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com