科目:初中數(shù)學 來源:黃岡重點作業(yè) 初三數(shù)學(下) 題型:044
先閱讀下列第(1)題的解答過程,然后再解答第(2)題.
(1)已知實數(shù)a、b滿足a2=2-2a,b2=2-2b且a≠b,求的值.
解 由已知得a2+2a-2=0,b2+2b-2=0且a≠b,設a、b是方程x2+2x-2=0的兩個不等實根.由根與系數(shù)的關系,得
a+b=-2,ab=-2,則(2)已知m2-3m-5=0,5n2+3n-1=0且≠0,求m2+的值.
查看答案和解析>>
科目:初中數(shù)學 來源:解題升級 解題快速反應一典通 九年級級數(shù)學 題型:044
已知拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點,C是拋物線的頂點.
(1)用配方法求頂點C的坐標(用含有m的代數(shù)式表示);
(2)“若AB的長為2,求拋物線的解析式”的解法如下:
由(1)知,對稱軸與x軸交于點D(________,0).
∵拋物線具有對稱性,且AB=2,
∴AD=DB=|xA-xD|=.
∵A(xA,0)在拋物線y=(x-h(huán))2+k上,
∴(xA-h(huán))2+k=0. ①
∵h=xC=xD,
∴將|xA-xD|=代入①,得到關于m的方程0=()2+(________). 、
補全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法.
(3)將(2)中條件“AB的長為2”改為“△ABC為等邊三角形”,用類似的方法求出拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長.
小萍同學靈活運用軸對稱知識,將圖形進行翻折變換如圖1.她分別以AB、AC為對稱軸,畫出△ABD、△ACD的軸對稱圖形,D點的對稱點為E、F,延長EB、FC相交于G點,得到四邊形AEGF是正方形.設AD=x,利用勾股定理,建立關于x的方程模型,求出x的值.
(1)請你幫小萍求出x的值.
(2) 參考小萍的思路,探究并解答新問題:
如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請你按照小萍的方法畫圖,得到四邊形AEGF,求△BGC的周長.(畫圖所用字母與圖1中的字母對應)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com