【題目】如圖1,已知△ABC中,∠BAC=90°,AB=AC,AE是過A的一條直線。且點B、C在AE的兩側(cè),BD⊥AE于D,CE⊥AE于E,試設(shè)明:
(1)BD=DE+CE;
(2)若直線AE繞A點旋轉(zhuǎn)到圖2位置(BD<CE),其余條件不變時,則BD與DE、CE的關(guān)系如何?
(3)若直線AE繞A點旋轉(zhuǎn)到圖3位置(CE<BD),其余條件不變時,則BD與DE、CE的關(guān)系 。(直接寫出結(jié)果)
【答案】(1)見解析;(2)DE=BD-CE,理由見解析;(3)DE=BD-CE,理由見解析。
【解析】
(1)證明△ABD≌△CAE,即可證得BD=AE,AD=CE,而AE=AD+DE=CE+DE,即可證得;(2)(3)圖形變換了,但是(1)中的全等關(guān)系并沒有改變,因而BD與DE、CE的關(guān)系并沒有改變,利用(1)的方法即可快速證明。
解:(1)證明:∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
又∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,∠BAD+∠ABD=90°,
·∴∠ABD=∠EAC,
又∵AB=AC,
∴△ABD≌△CAE,
∴BD=AE,AD=CE,
又∵AE=AD+DE=CE+DE,
. ∴BD=DE+CE.
(2)BD=DE-CE,理由如下:
如圖2:∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
又∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,∠BAD+∠ABD=90°,
·∴∠ABD=∠EAC,
又∵AB=AC,
∴△ABD≌△CAE,
∴BD=AE,AD=CE,
又∵AE=DE-AD
. ∴BD=DE-CE.
(3) BD=DE-CE,理由如下:
如圖3:∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
又∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,∠BAD+∠ABD=90°,
·∴∠ABD=∠EAC,
又∵AB=AC,
∴△ABD≌△CAE,
∴BD=AE,AD=CE,
又∵AE=DE-AD=DE-CE,
. ∴BD=DE-CE.
同理可得,DE=BD+CE;(3)同理可得,DE=BD+CE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,將此等腰三角形紙片沿底邊BC上的高AD剪成兩個全等的三角形,用這兩個三角形拼成一個平行四邊形,則所拼出的所有平行四邊形中最長的對角線的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)軸上點A表示a,點B表示b,且a,b滿足
(1)x表示a+b的整數(shù)部分,y表示a+b的小數(shù)部分,則x= y = ;
(2)若點A與點C之間的距離表示AC,點B與點C之間的距離表示BC,請在數(shù)軸上找一點C,使得AC=2BC,求點C在數(shù)軸上表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名射擊運動員進行射擊比賽,兩人在相同條件下,各射擊10次,射擊的成績?nèi)鐖D所示.根據(jù)統(tǒng)計圖信息,整理分析數(shù)據(jù)如下:
平均成績(環(huán)) | 中位數(shù)(環(huán)) | 眾數(shù)(環(huán)) | 方差 | |
甲 | 8 | b | 8 | s2 |
乙 | a | 7 | c | 0.6 |
(1)補充表格中a,b,c的值,并求甲的方差s2;
(2)運用表中的四個統(tǒng)計量,簡要分析這兩名運動員的射擊成績,若選派其中一名參賽,你認為應選哪名運動員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某興趣小組借助無人飛機航拍校園.如圖,無人飛機從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AD=3,CD=4,點E在CD上,且DE=1.
(1)感知:如圖①,連接AE,過點E作EF丄AE,交BC于點F,連接AE,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE和△ECF相似;
(3)應用:如圖③,若EF交AB于點F,EF丄PE,其他條件不變,且△PEF的面積是6,則AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,DM、EN分別垂直平分AC和BC,交AB于M、N兩點,DM與EN相交于點F.
(1)若△CMN的周長為15cm,求AB的長;
(2)若∠MFN=70°,求∠MCN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)
(1)若△CEF與△ABC相似,且當AC=BC=2時,求AD的長;
(2)若△CEF與△ABC相似,且當AC=3,BC=4時,求AD的長;
(2)當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com