【題目】在ABCD中,E、F分別是AD、BC上的點(diǎn),將平行四邊形ABCD沿EF所在直線翻折,使點(diǎn)B與點(diǎn)D重合,且點(diǎn)A落在點(diǎn)A′處.
(1)求證:△A′ED≌△CFD;
(2)連結(jié)BE,若∠EBF=60°,EF=3,求四邊形BFDE的面積.
【答案】(1)見(jiàn)解析;(2).
【解析】
由由翻折可知:AB=A′D,∠ABC=∠A′DF,∠EFB=∠EFD,由平行四邊形的性質(zhì)知,AB=CD,∠ABC=∠ADC,進(jìn)一步可證∠FDC=∠A′DE, A′D=CD.再結(jié)合平行線的性質(zhì)說(shuō)明ED=DF,即可證明△A′ED≌△CFD;
(2)先證明四邊形EBFD為菱形,從而BE=BF=3.過(guò)點(diǎn)E作EH⊥BC于點(diǎn)H,根據(jù)銳角三角函數(shù)的知識(shí)求出EH的長(zhǎng),然后利用三角形面積公式計(jì)算即可.
(1)證明:由翻折可知:
AB=A′D,∠ABC=∠A′DF,∠EFB=∠EFD,
∵四邊形ABCD是平行四邊形,
∴AB=CD,∠ABC=∠ADC,
∴∠ADC=∠A′DF,
∴∠FDC=∠A′DE,
∵AB=A′D,AB=CD,
∴A′D=CD.
∵AD∥BC,
∴∠DEF=∠EFB,
∵∠EFB=∠EFD,
∴∠DEF=∠EFD,
∴ED=DF,
∴△A′ED≌△CFD;
(2)解:∵AD∥BC,A′B∥DF,
∴四邊形EBFD為平行四邊形.
由(1)DE=DF,
∴四邊形EBFD為菱形.
∵∠EBF=60°,
∴△BEF為菱形.
∵EF=3,
∴BE=BF=3.
過(guò)點(diǎn)E作EH⊥BC于點(diǎn)H,
∴四邊形BFDE的面積為:sin60°AEBF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠ABC和∠ACB的角平分線相交于點(diǎn)P,且PE⊥AB,PF⊥AC,垂足分別為E、F
(1)求證:PE=PF;
(2)若∠BAC=60°,連接AP,求∠EAP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察圖,先填空,然后回答問(wèn)題
(1)由上而下第行的白球與黑球總數(shù)比第行多 個(gè).若第行白球與黑球的總數(shù)記作,寫(xiě)出與的關(guān)系式.
(2)求出第行白球與黑球的總數(shù)可能是個(gè)嗎?如果是,求出的值;如果不是,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=(t+1)x2+2(t+2)x+在x=0和x=2時(shí)的函數(shù)值相等
(1)求二次函數(shù)的解析式,并作圖象;
(2)若一次函數(shù)y=kx+6的圖象與二次函數(shù)的象都經(jīng)過(guò)點(diǎn)A(﹣3,m),求m和k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=(x﹣1)2﹣4,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的七邊形ABCDEFG中,∠1、∠2、∠3、∠4 四個(gè)角的外角和為180°,∠5 的外角為60°,BP、DP 分別平分∠ABC、∠CDE,則∠BPD 的度數(shù)是( 。
A. 130° B. 120° C. 110° D. 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別相交于點(diǎn)C、B,與直線相交于點(diǎn)A.
(1)求A點(diǎn)坐標(biāo);
(2)如果在y軸上存在一點(diǎn)P,使△OAP是以O(shè)A為底邊的等腰三角形,求P點(diǎn)坐標(biāo);
(3)在直線上是否存在點(diǎn)Q,使△OAQ的面積等于6?若存在,請(qǐng)求出Q點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰和等腰中,,,連接交于點(diǎn).
(1)如圖1,若:
①與的數(shù)量關(guān)系為 ;
②的度數(shù)為 ;
圖1
(2)如圖2,若:
圖2
①判斷與之間存在怎樣的數(shù)量關(guān)系?并說(shuō)明理由;
②求的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A為某旅游景區(qū)的最佳觀景點(diǎn),游客可以在B處乘坐纜車沿BD方向先到達(dá)小觀景平臺(tái)DE觀景,然后再由E處繼續(xù)乘坐纜車沿EA方向到達(dá)A處,返程時(shí)從A處乘坐升降電梯直接到C處.已知AC⊥BC于C,DE∥BC,斜坡BD的坡度i=4:3,BC=210米,DE=48米,BD=100米,α=64°,則AC的高度為( 。┟祝ńY(jié)果精確到0.1米,參考數(shù)據(jù):sin64°≈0.9,tan64°≈2.1)
A. 214.2 B. 235.2 C. 294.2 D. 315.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com