【題目】解下列方程:
(1)9(y+4)2﹣49=0
(2)2x2+3=7x(配方法);
(3)2x2﹣7x+5=0 (公式法)
(4)x2=6x+16
(5)2x2﹣7x﹣18=0
(6)(2x﹣1)(x+3)=4.
【答案】(1)y1=﹣,y2=﹣;(2)x1=3,x2=;(3)x1=2.5,x2=1;(4)x1=﹣2,x2=8(5)x=;(6)x1=﹣3.5,x2=1.
【解析】試題分析:
(1)用“直接開平方法”解此方程即可;
(2)、(3)按指定方法解方程即可;
(4)先將方程化為一般形式,再用“因式分解法”解此方程:
(5)用“公式法”解此方程即可;
(6)先整理為一般形式,再用“因式分解法”解此方程.
試題解析:
(1)方程可化為:(y+4)2=,
開方得:y+4=±,
解得:y1=﹣,y2=﹣;
(2)方程整理得:x2﹣x=﹣,
配方得:x2﹣x+=,即(x﹣)2=,
開方得:x﹣=±,
解得:x1=3,x2=;
(3)∵在方程2x2﹣7x+5=0中,a=2,b=﹣7,c=5,
∴△=49﹣40=9,
∴x=,
解得:x1=2.5,x2=1;
(4)原方程整理得:x2﹣6x﹣16=0,即(x+2)(x﹣8)=0,
解得:x1=﹣2,x2=8;
(5)∵在方程2x2﹣7x﹣18=0
中,a=2,b=﹣7,c=﹣18,
∵△=49+144=193,
∴ x=;
∴, .
(6)原方程整理得:2x2+5x﹣7=0,
即(2x+7)(x﹣1)=0,
解得:x1=﹣3.5,x2=1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB于點D,連結(jié)CD.
(1)如圖1,若點D與圓心O重合,AC=2,求⊙O的半徑r;
(2)如圖2,若點D與圓心O不重合,∠BAC=25°,求∠DCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M,N為坐落于公路兩旁的村莊,如果一輛施工的機動車由A向B行駛,產(chǎn)生的噪音會對兩個村莊造成影響.
(1)當(dāng)施工車行駛到何處時,產(chǎn)生的噪音分別對兩個村莊影響最大?在圖中標(biāo)出來.
(2)當(dāng)施工車從A向B行駛時,產(chǎn)生的噪音對M,N兩個村莊的影響情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿∠CAB的角平分線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種飲料,平均每天可售出100箱,每箱利潤120元.天氣漸熱,為了擴大銷售,增加利潤,超市準(zhǔn)備適當(dāng)降價.據(jù)測算,若每箱飲料每降價1元,每天可多售出2箱.針對這種飲料的銷售情況,請解答以下問題:
(1)當(dāng)每箱飲料降價20元時,這種飲料每天銷售獲利多少元?
(2)在要求每箱飲料獲利大于80元的情況下,要使每天銷售飲料獲利14400元,問每箱應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,點B,E,C,F在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=21,EC=9,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C為一個平行四邊形的三個頂點,且A,B,C三點的坐標(biāo)分別為(3,3),(6,4),(4,6).
(1)請直接寫出這個平行四邊形第四個頂點的坐標(biāo);
(2)求這個平行四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】安寧市的一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1000元,若經(jīng)粗加工后銷售,每噸利潤可達4500元;若經(jīng)精加工后銷售每噸獲利7500元.當(dāng)?shù)匾患肄r(nóng)產(chǎn)品企業(yè)收購這種蔬菜140噸,該企業(yè)加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工,每天可以加工16噸,如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季節(jié)條件限制,企業(yè)必須在15天的時間將這批蔬菜全部銷售或加工完畢,企業(yè)研制了四種可行方案:
方案一:全部直接銷售;
方案二:全部進行粗加工;
方案三:盡可能多地進行精加工,沒有來得及進行精加工的直接銷售;
方案四:將一部分進行精加工,其余的進行粗加工,并恰好15天完成.
請通過計算以上四個方案的利潤,幫助企業(yè)選擇一個最佳方案使所獲利潤最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】研究問題:一個不透明的盒中裝有若干個只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數(shù)量?
操作方法:先從盒中摸出8個球,畫上記號放回盒中,再進行摸球?qū)嶒,摸球(qū)嶒灥囊螅合葦嚢杈鶆,每次摸出一個球,記錄球的顏色,放回盒中,然后重復(fù)上述過程。
活動結(jié)果:摸球?qū)嶒灮顒右还沧隽?/span>50次,統(tǒng)計結(jié)果如下表:
推測計算:由上述的摸球?qū)嶒灴赏扑悖?/span>
(1)盒中紅球、黃球各占總球數(shù)的百分比分別是多少?
(2)盒中有紅球多少個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com