【題目】已知一次函數(shù)的圖象交x軸于A(6,0),交正比例函數(shù)的圖象于點(diǎn)B,且點(diǎn)B在第三象限,它的橫坐標(biāo)為2,AOB的面積為6平方單位,求正比例函數(shù)和一次函數(shù)的解析式.

【答案】(1)y=x (2)y=-x-3

【解析】試題分析點(diǎn)B在第三象限橫坐標(biāo)為﹣2,設(shè)B(﹣2,yB),其中yB<0,利用三角形面積公式得到AO|yB|=6,×6×|yB|=6,可解得yB=﹣2,然后利用待定系數(shù)法求兩個(gè)函數(shù)解析式.

試題解析設(shè)正比例函數(shù)y=kx,一次函數(shù)y=ax+b∵點(diǎn)B在第三象限橫坐標(biāo)為﹣2,設(shè)B(﹣2,yB),其中yB<0.SAOB=6,∴AO|yB|=6,×6×|yB|=6,∴yB=﹣2,∴B點(diǎn)坐標(biāo)為(﹣2,﹣2),把點(diǎn)B(﹣2,﹣2)代入正比例函數(shù)y=kx,:2k=2,解得k=1;

故正比例函數(shù)的解析式為y=x

把點(diǎn)A(﹣6,0)、B(﹣2,﹣2)代入y=ax+b,,解得,故正比例函數(shù)的解析式為y=x,一次函數(shù)的解析式為y=﹣x﹣3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,△ABC,∠BAC=60°AD平分∠BAC,AC=AB+BD,求∠B的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)Py軸上,⊙Px軸于A,B兩點(diǎn),連接BP并延長(zhǎng)交⊙P于點(diǎn)C,過(guò)點(diǎn)C的直線y2xbx軸于點(diǎn)D,且⊙P的半徑為,AB4.

(1)求點(diǎn)B,P,C的坐標(biāo);(2)求證:CD是⊙P的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠接到一批服裝加工業(yè)務(wù),若由甲車間獨(dú)做,可比規(guī)定時(shí)間提前8天完成,甲車間在制作完這批服裝的60%后因另有任務(wù),立即將剩余服裝全部交給乙車間,結(jié)果剛好按規(guī)定時(shí)間完成.已知甲、乙兩個(gè)車間每天分別制作200120件服裝,求該工廠所接的這批服裝的件數(shù)和規(guī)定時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】y=x2的圖象向上平移2個(gè)單位.

1求新圖象的解析式、頂點(diǎn)坐標(biāo)和對(duì)稱軸;

2畫出平移后的函數(shù)圖象;

3求平移后的函數(shù)的最大值或最小值,并求對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程或方程組

(1) 3 = 124+x);(2)

(3) ;(4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在5次打靶測(cè)試中命中的環(huán)數(shù)如下:

甲:8,8,7,8,9

乙:5,9,7,10,9

(1)計(jì)算甲、乙兩人射擊成績(jī)的平均數(shù).

(2)計(jì)算甲、乙兩人的射擊成績(jī)的方差,并說(shuō)明誰(shuí)的成績(jī)更穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生參加戶外活動(dòng)的情況,和諧中學(xué)對(duì)學(xué)生每天參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖示,請(qǐng)回答下列問(wèn)題:

(1)求被抽樣調(diào)查的學(xué)生有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)該校共有1850名學(xué)生,請(qǐng)估計(jì)該校每天戶外活動(dòng)時(shí)間超過(guò)1小時(shí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】推理填空:

如圖,已知∠12,BC,可推得ABCD.理由如下:

∵∠12(已知),且∠14(____________),

∴∠24(等量代換),

CEBF(__________________________),

∴∠________3(______________________)

又∵∠BC(已知),

∴∠3B(等量代換)

ABCD(__________________________)

查看答案和解析>>

同步練習(xí)冊(cè)答案