【題目】解不等式組 請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得;
(Ⅱ)解不等式②,得;
(Ⅲ)把不等式①和②的階級(jí)在數(shù)軸上表示出來;
(Ⅳ)原不等式組的解集為
【答案】x≥﹣3;x<2;;﹣3≤x<2
【解析】解:(Ⅰ)系數(shù)化成1得x≥﹣3. 故答案是:x≥﹣3;
(Ⅱ)去括號(hào),得3x+3<2x+5,
移項(xiàng),得3x﹣2x<5﹣3,
合并同類項(xiàng),得x<2.
故答案是:x<2;
(Ⅳ)不等式組的解集是﹣3≤x<2.
故答案是:﹣3≤x<2.
【考點(diǎn)精析】通過靈活運(yùn)用不等式的解集在數(shù)軸上的表示和一元一次不等式組的解法,掌握不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫數(shù)軸②定界點(diǎn)③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實(shí)心圓點(diǎn),不等于用空心圓圈;解法:①分別求出這個(gè)不等式組中各個(gè)不等式的解集;②利用數(shù)軸表示出各個(gè)不等式的解集;③找出公共部分;④用不等式表示出這個(gè)不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個(gè)不等式組無解 ( 此時(shí)也稱這個(gè)不等式組的解集為空集 )即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(,1)、B(2,0)、O(0,0),反比例函數(shù)y=圖象經(jīng)過點(diǎn)A.
(1)求k的值
(2)將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°,得到△COD,其中點(diǎn)A與點(diǎn)C對(duì)應(yīng),試判斷點(diǎn)D是否在該反比例函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索性問題:
已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請(qǐng)回答問題:
(1)請(qǐng)直接寫出a、b、c的值.a= ,b= ,c= ;
(2)數(shù)軸上a、b、c三個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)A、B、C同時(shí)開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒1個(gè)單位長度和3個(gè)單位長度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC.
①t秒鐘過后,AC的長度為 (用t的關(guān)系式表示);
②請(qǐng)問:BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動(dòng)一個(gè)單位,得到(0,1),(1,1),(1,0),(2,0),…那么點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在9×9的正方形網(wǎng)格中,△ABC三個(gè)頂點(diǎn)在格點(diǎn)上,每個(gè)小正方形的邊長為1.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系后,若點(diǎn)A的坐標(biāo)為(1,1),點(diǎn)C的坐標(biāo)為(4,2),畫出平面直角坐標(biāo)系并寫出點(diǎn)B的坐標(biāo);
(2)直線l經(jīng)過點(diǎn)A且與y軸平行,寫出點(diǎn)B、C關(guān)于直線l對(duì)稱點(diǎn)B1、C1的坐標(biāo);
(3)直接寫出BC上一點(diǎn)P(a,b)關(guān)于直線l對(duì)稱點(diǎn)P1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某中學(xué)九年級(jí)數(shù)學(xué)活動(dòng)小組選定測量學(xué)校前面小河對(duì)岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測得大樹頂端B的仰角是48°.若斜坡FA的坡比i=1: ,求大樹的高度.(結(jié)果保留一位小數(shù))參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11, 取1.73.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣4x與x軸交于O,A兩點(diǎn),P為拋物線上一點(diǎn),過點(diǎn)P的直線y=x+m與對(duì)稱軸交于點(diǎn)Q
(1)這條拋物線的對(duì)稱軸是 ,直線PQ與x軸所夾銳角的度數(shù)是 .
(2)若兩個(gè)三角形面積滿足S△POQ=S△PAQ , 求m的值
(3)當(dāng)點(diǎn)P在x軸下方的拋物線上時(shí),過點(diǎn)C(2,2)的直線AC與直線PQ交于點(diǎn)D,求:①PD+DQ的最大值;②PDDQ的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是線段AB上的一點(diǎn),M是AB的中點(diǎn),N是CB的中點(diǎn).
(1)若AB=13,CB=5,求MN的長度;
(2)若AC=6,求MN的長度。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com