分析 首先根據(jù)折疊可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,進而求得∠B′FD=90°,CE=EF=$\frac{12}{5}$,ED=AE=$\frac{9}{5}$,從而求得B′D=1,DF=$\frac{3}{5}$,即可求出B'F.
解答 解:根據(jù)折疊的性質(zhì)可知,CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,
∴B′D=4-3=1,∠DCE+∠B′CF=∠ACE+∠BCF,
∵∠ACB=90°,
∴∠ECF=45°,
∴△ECF是等腰直角三角形,
∴EF=CE,∠EFC=45°,
∴∠BFC=∠B′FC=135°,
∴∠B′FD=90°,
∵S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•CE,
∴AC•BC=AB•CE,
∵根據(jù)勾股定理求得AB=5,
∴CE=$\frac{12}{5}$,
∴EF=$\frac{12}{5}$,ED=AE=$\sqrt{A{C}^{2}-C{E}^{2}}$=$\frac{9}{5}$,
∴AD=2×$\frac{9}{5}$=$\frac{18}{5}$,DF=EF-ED=$\frac{3}{5}$,
∴B'F=BF=AB-AD-DF=$\frac{4}{5}$.
故答案為:$\frac{18}{5}$,$\frac{4}{5}$.
點評 此題主要考查了翻折變換,等腰三角形的判定和性質(zhì),勾股定理的應(yīng)用等,根據(jù)折疊的性質(zhì)求得相等的角是解決本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com