【題目】如圖,在Rt△ABC中,∠ACB90°,AC2BC4,點PCB邊上的一點,且tan∠PAC,⊙O△APB的外接圓.

1)求證:∠PAC∠ABC;

2)求證:AC⊙O的切線;

3)求⊙O的半徑.

【答案】1)見解析;(2)見解析;(3

【解析】

1)通過證明△ACP∽△BCA,可得∠PAC=ABC;

2)作直徑AD,交⊙O于點D,連結(jié)PD,由圓周角定理可求∠PDA=PAC=ABC,可證ADAC,即可得⊙O與直線AC的位置關系;
3)利用銳角三角函數(shù)可求CP,PD的長,由勾股定理可求AP的長,AD的長,可得⊙O的半徑.

解:(1)證明:在Rt△ACP中,tan∠PAC

∵AC2,BC4,

,

,

∵∠PCA∠ACB90°,

∴△ACP∽△BCA,

∴∠PAC∠ABC;

2)證明:如圖,作⊙O的直徑AD,交⊙O于點D,連接PD,

∵AD⊙O的直徑,

∴∠APD90°,

∴∠PAD∠PDA90°,

∵∠PDA∠ABC,∠PAC∠ABC,

∴∠PDA∠PAC,

∴∠PAC∠PAD90°,

∴∠CAD90°,

∴AD⊥AC

∵AD⊙O的直徑,

∴AC⊙O的切線;

3∵tan∠PAC,AC2

∴PC1,

∴AP

∵∠PDA∠PAC,

∴tan∠PACtan∠PDA,

∴PD2AP,

∴AD,

∴⊙O的半徑為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,邊上一點,連接,過,交

1)如圖1,連接,當,時,求的長;

2)如圖2,對角線,交于點.連接,若,求的長;

3)如圖3,對角線,交于點.連接,,若,試探索的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是一臺實物投影儀,圖2是它的示意圖,折線B-A-O表示固定支架,AO垂直水平桌面OE于點O,點B為旋轉(zhuǎn)點,BC可轉(zhuǎn)動,當BC繞點B順時針旋轉(zhuǎn)時,投影探頭CD始終垂直于水平桌面OE,經(jīng)測量:AO=64cmCD=8cm,AB=40cm,BC=45cm,

1

(1)如圖2,∠ABC=70°,BCOE

①填空:∠BAO= °

②投影探頭的端點D到桌面OE的距離

(2)如圖3,將(1)中的BC向下旋轉(zhuǎn),∠ABC=30°時,求投影探頭的端點D到桌面OE的距離

(參考數(shù)據(jù):sin70≈094,cos70≈034sin40°≈064,cos40°≈077)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一艘輪船在處測得燈塔在船的南偏東60°方向,輪船繼續(xù)向正東航行30海里后到達處,這時測得燈塔在船的南偏西75°方向,則燈塔離觀測點、的距離分別是(

A.海里、15海里B.海里、15海里

C.海里、海里D.海里、海里

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知△ABC與△DEF均為等邊三角形,且AB2,DB1,現(xiàn)△ABC靜止不動,△DEF沿著直線EC以每秒1個單位的速度向右移動設△DEF移動的時間為x,△DEF與△ABC重合的面積為y,則能大致反映yx函數(shù)關系的圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀對學生的成長有著深遠的影響.某中學為了解學生每周課余閱讀的時間,在本校隨機抽取若干名學生進行調(diào)查,并依據(jù)調(diào)查結(jié)果經(jīng)制了以下不完整的統(tǒng)計圖表.

組別

時間(小時)

頻數(shù)(人數(shù))

頻率

A

6

B

C

10

D

8

E

4

合計

1

請根據(jù)圖表中的信息,解答下列問題:

1)表中的 , ,將頻數(shù)分布直方圖補全;

2)估計該校2000名學生中,每周課余閱讀時間不足1小時的學生大約有多少名?

3組的4人中,有1名男生和3名女生,該校計劃在組學生中隨機選出兩人向全校同學作讀書心得報告,求抽取的兩名學生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,,為格點,為小正方形邊的中點.

1的長等于_________;

2)點,分別為線段,上的動點,當取得最小值時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段,,并簡要說明點和點的位置是如何找到的(不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線x軸于A﹣1,0)和B5,0)兩點,交y軸于點C,點D是線段OB上一動點,連接CD,將線段CD繞點D順時針旋轉(zhuǎn)90°得到線段DE,過點E作直線l⊥x軸于H,過點CCF⊥lF

1)求拋物線解析式;

2)如圖2,當點F恰好在拋物線上時,求線段OD的長;

3)在(2)的條件下:

連接DF,求tan∠FDE的值;

試探究在直線l上,是否存在點G,使∠EDG=45°?若存在,請直接寫出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).

(1)求拋物線的函數(shù)解析式;

(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;

(3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.

查看答案和解析>>

同步練習冊答案