【題目】如圖,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN經(jīng)過點(diǎn)O,與AB,AC相交于點(diǎn)M,N,且MN∥BC,則BM,CN之間的關(guān)系是(
A.BM+CN=MN
B.BM﹣CN=MN
C.CN﹣BM=MN
D.BM﹣CN=2MN

【答案】B
【解析】證明:∵ON∥BC, ∴∠MOC=∠OCD
∵CO平分∠ACD,
∴∠ACO=∠DCO,
∴∠NOC=∠OCN,
∴CN=ON,
∵ON∥BC,
∴∠MOB=∠OBD
∵BO平分∠ABC,
∴∠MBO=∠CBO,
∴∠MBO=∠MOB,
∴OM=BM
∵OM=ON+MN,OM=BM,ON=CN,
∴BM=CN+MN,
∴MN=BM﹣CN.
故選B.
【考點(diǎn)精析】關(guān)于本題考查的平行線的性質(zhì),需要了解兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星期六,小亮從家里騎自行車到同學(xué)家去玩,然后返回,圖是他離家的路程y(千米)與時(shí)間x(分鐘)的函數(shù)圖象,根據(jù)圖象信息,下列說法不一定正確的是( )
A.小亮到同學(xué)家的路程是3千米
B.小亮在同學(xué)家逗留的時(shí)間是1小時(shí)
C.小亮去時(shí)走上坡路,回家時(shí)走下坡路
D.小亮回家時(shí)用的時(shí)間比去時(shí)用的時(shí)間少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的解析式為y=﹣2x+2,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A(4,0),B(0,﹣1),兩直線交于點(diǎn)C.

(1)點(diǎn)D的坐標(biāo)為;
(2)求直線l2的表達(dá)式;
(3)求△ADC的面積;
(4)若有過點(diǎn)C的直線CE把△ADC的面積分為2:1兩部分,請(qǐng)直接寫出直線CE的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動(dòng)點(diǎn)P在拋物線上.

(1)b= ,c= ,點(diǎn)B的坐標(biāo)為 ;(直接填寫結(jié)果)

(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;

(3)過動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題
甲、乙兩人同時(shí)從相距25千米的A地去B地,甲騎車乙步行,甲的速度是乙的速度的3倍,甲到達(dá)B地停留40分鐘,然后從B地返回A地,在途中遇見乙,這時(shí)距他們出發(fā)的時(shí)間恰好3小時(shí),求兩人的速度各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)在一次用頻率去估計(jì)概率的實(shí)驗(yàn)中,統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計(jì)圖如圖所示,符合這一結(jié)果的實(shí)驗(yàn)可能是( 。

A.擲一枚正六面體的骰子,出現(xiàn)1點(diǎn)的概率
B.任意寫一個(gè)正整數(shù),它能被3整除的概率
C.拋一枚硬幣,出現(xiàn)正面的概率
D.從一個(gè)裝有2個(gè)白球和1個(gè)紅球的袋子中任取一球,取到白球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:4x2﹣12xy+9y2=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點(diǎn)B表示-11,點(diǎn)A表示10,那么離開原點(diǎn)較遠(yuǎn)的是 點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線交x軸于點(diǎn)A(1,0),交y軸于點(diǎn)B,對(duì)稱軸是x=2.

(1)求拋物線的解析式;

(2)點(diǎn)P是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P,使PAB的周長(zhǎng)最。咳舸嬖冢蟪鳇c(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案