5.如圖,在△ABC中,AB=8,BC=6,AC=5,點D在AC上,連結(jié)BD,將△ABC沿BD翻折后,若點C恰好落在AB邊上的點E處,則△ADE的周長為7.

分析 由翻折的性質(zhì)可知:DC=DE,BC=EB,于是可得到AD+DE=5,AE=2,故此可求得△ADE的周長為7.

解答 解:∵由翻折的性質(zhì)可知:DC=DE,BC=EB=6.
∴AD+DE=AD+DC=AC=5,AE=AB-BE=AB-CB=8-6=2.
∴△ADE的周長=5+2=7.
故答案為:7.

點評 本題主要考查的是翻折的性質(zhì),根據(jù)翻折的性質(zhì)求得AD+DE=5,AE=2是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:選擇題

15.下列各式是完全平方式的是( 。
A.x2+2x-1B.1+x2C.x+xy+1D.x2-2x+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.計算:
①$\sqrt{20\frac{1}{4}}$-$\frac{1}{3}$$\sqrt{0.36}$-$\frac{1}{5}$$\sqrt{900}$
②2x2y•(-3xy)÷(xy)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

13.已知點A(2,4)與點B(b-1,2a)關于原點對稱,則a=-2,b=-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.如圖,點D在AE上,BD=CD,∠BDE=∠CDE.求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

10.已知方程組$\left\{\begin{array}{l}{a+2b=4}\\{3a+2b=8}\end{array}\right.$,則點(a,b)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

17.在某旅游景點,為了增加旅游的樂趣,特安排了一次“尋寶”游戲,尋寶人找到了如圖所示的兩個標志點A(2,1),B(4,-1),這兩個標志點到“寶藏”點的距離都是$\sqrt{10}$,請你想想辦法,在如圖的方格紙中畫出這個平面直角坐標系,并求出“寶藏”所在位置的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.在-3,-$\sqrt{4}$,$\frac{π}{3}$,-$\root{3}{5}$,0,這幾個數(shù)中,無理數(shù)的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

15.正三角形ABC的內(nèi)切圓半徑為1,則△ABC的邊長是( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.2D.4

查看答案和解析>>

同步練習冊答案