分析 過點(diǎn)D作DF⊥AB于點(diǎn)F,設(shè)DF=xm,則AF=xm,EF=(30-x)m,在Rt△DEF中,根據(jù)銳角三角函數(shù)的定義即可得出結(jié)論.
解答 解:過點(diǎn)D作DF⊥AB于點(diǎn)F,設(shè)DF=x米,
∵AE=30m,∠ADF=45°,
∴AF=xm,EF=(30-x)m,
在Rt△DEF中,
∵∠EDF=30m,
∴$\frac{EF}{DF}$=tan30°,即$\frac{30-x}{x}$=$\frac{\sqrt{3}}{3}$,解得x=15-3$\sqrt{3}$≈15-5.19≈9.8(m).
答:兩建筑物間的距離BC為9.8m.
點(diǎn)評 本題考查的是解直角三角形的應(yīng)用-仰角俯角問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用銳角三角函數(shù)的定義求解是解答此題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{9}$ | B. | $\sqrt{20}$ | C. | $\sqrt{7}$ | D. | $\sqrt{0.2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$-$\sqrt{3}$ | B. | $\sqrt{2}$+$\sqrt{3}$ | C. | -$\sqrt{2}$-$\sqrt{3}$ | D. | -$\sqrt{2}$+$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x+1}{6}$+$\frac{x}{8}$=1 | B. | $\frac{x}{6}$+$\frac{x+1}{8}$=1 | C. | $\frac{x}{6}$+$\frac{x-1}{8}$=1 | D. | $\frac{x}{6}$+$\frac{1}{6}$+$\frac{x-1}{8}$=1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{5}{8}$ | B. | -$\frac{1}{5}$ | C. | -$\frac{2}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}+1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com