【題目】如圖,在ABCD中,AB18,AD12,∠ABC的平分線交CD于點F,交AD的延長線于點E,CGBE,垂足為G,若EF4,則線段CG的長為( 。

A.2B.6C.4D.8

【答案】D

【解析】

首先證明CF=BC=12,利用相似三角形的性質(zhì)求出BF,再利用勾股定理即可解決問題.

解:∵四邊形ABCD是平行四邊形,

ABCD18AEBC,ABCD,

∴∠CFB=∠FBA,

BE平分∠ABC

∴∠ABF=∠CBF,

∴∠CFB=∠CBF,

CBCF12,

DF18126,

DECB,

∴△DEF∽△CBF

,即

BF8,

CFCB,CGBF,

BGFG4,

RtBCG中,CG

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點C圓外一點,OC垂直于弦AD,垂足為點FOC交⊙O于點E,連接AC,∠BED=∠C

1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;

2)是否存在BE平分∠OED的情況?如果存在,求此時∠C的度數(shù);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠ACB45°.點D(與點BC不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

1)如果ABAC.如圖①,且點D在線段BC上運動.試判斷線段CFBD之間的位置關(guān)系,并證明你的結(jié)論.

2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結(jié)論是否成立,為什么?

3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設(shè)AC4BC3,CDx,求線段CP的長.(用含x的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點,以BD為直徑的O經(jīng)過點E,且交BC于點F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求證:三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半.解答要求如下:

1)對于圖中△ABC,用尺規(guī)作出一條中位線DE;(不必寫作法,但應(yīng)保留作圖痕跡)

2)根據(jù)(1)中作出的中位線,寫出已知,求證和證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在3×3正方形方格中,有3個小正方形涂成了黑色,所形成的圖案如圖所示,圖中每塊小正方形除顏色外完全相同.

1)一個小球在這個正方形方格上自由滾動,那么小球停在黑色小正方形的概率是多少?

2)現(xiàn)將方格內(nèi)空白的小正方形(AB、C、D、E、F)中任取2個涂黑,得到新圖案,請用列表或畫樹狀圖的方法求新圖案是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:兩座建筑物AB、CD相距60米,從點A測得D點的俯角為30°,從A點下降10米到E點,在E點測得C點的俯角為43°求兩座建筑物的高度.(精確到0.1)(參考數(shù)據(jù):1.73,cos43°≈0.73sin43°≈0.68,tan43°≈0.93

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k1x+k20有兩個不等實根x1x2,

1)求實數(shù)k的取值范圍;

2)若方程兩實根x1,x2滿足x1+x2+x1x210,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】跳繩時,繩甩到最高處時的形狀是拋物線. 正在甩繩的甲、乙兩名同學拿繩的手間距AB6米,到地面的距離AOBD均為0. 9米,身高為1. 4米的小麗站在距點O的水平距離為1米的點F處,繩子甩到最高處時剛好通過她的頭頂點E. 以點O為原點建立如圖所示的平面直角坐標系, 設(shè)此拋物線的解析式為.

1)求該拋物線的解析式;

2)如果身高為1. 85米的小華也想?yún)⒓犹K,問繩子能否順利從他頭頂越過?請說明理由;

3)如果一群身高在1. 4米到1. 7米之間的人站在OD之間,且離點O的距離為t, 繩子甩到最高處時必須超過他們的頭頂,請結(jié)合圖像,寫出t的取值范圍_______________.

查看答案和解析>>

同步練習冊答案