分析 (1)由正方形的性質(zhì)得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DH;
(2)將FE平移到AM處,則AM∥EF,AM=EF,將GH平移到DN處,則DN∥GH,DN=GH.根據(jù)(1)的結(jié)論得AM=DN,所以EF=GH;
(3)過點F作FP⊥BC于點P,利用勾股定理得出EF的長,進(jìn)而得出HG的長.
解答 (1)證明:∵四邊形ABCD是正方形,
∴AB=DA,∠ABE=90°=∠DAH.
∴∠HAO+∠OAD=90°.
∵AE⊥DH,
∴∠ADO+∠OAD=90°.
∴∠HAO=∠ADO,
在△ABE和△DAH中
$\left\{\begin{array}{l}{∠HAO=∠DAH}\\{AB=AD}\\{∠B=∠HAD}\end{array}\right.$,
∴△ABE≌△DAH(ASA),
∴AE=DH.
(2)解:EF=GH.
理由:如圖2,將FE平移到AM處,則AM∥EF,AM=EF.
將GH平移到DN處,則DN∥GH,DN=GH.
∵EF⊥GH,
∴AM⊥DN,
根據(jù)(1)的結(jié)論得AM=DN,
所以EF=GH;
(3)解:如圖3,
過點F作FP⊥BC于點P,
∵四邊形ABCD是正方形,BC=4,
∴AD=BC=AB=FP=4,
∵E為BC的中點,AF=$\frac{1}{4}$AD,
∴BE=2,AF=1,
∴PE=2-1=1,
在Rt△FPE中,EF=$\sqrt{{4}^{2}+{1}^{2}}$=$\sqrt{17}$,
由(2)得:HG=EF,
∴HG=$\sqrt{17}$.
點評 本題考查了四邊形綜合以及三角形的綜合知識,用到全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理等綜合性較強(qiáng),難度較大.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 40° | B. | 50° | C. | 60° | D. | 30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com