【題目】如圖,在正方形ABCD中,E、F分別是AB、CD的中點,EGAFFHCE,垂足分別為G,H,設AG=x,圖中陰影部分面積為y,則yx之間的函數(shù)關系式是( 。

A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2

【答案】C

【解析】

設正方形的邊長為2a,易證四邊形AFCE是平行四邊形,所以四邊形EHFG是矩形,由∠AEG=∠BCE得到等式,從而可用x表示出EG,接著用x表示EH,從而可求出yx之間的關系式.

解:設正方形的邊長為2a,
BC=2aBEa,
EF分別是AB、CD的中點,
AECF,
AECF
∴四邊形AFCE是平行四邊形,
AFCE
EGAF,FHCE,
∴四邊形EHFG是矩形,
∵∠AEG+∠BEC=∠BCE+∠BEC=90°,
∴∠AEG=∠BCE
tanAEGtanBCE,

EG=2x,
∴由勾股定理可知:AEx,
ABBCx,
CE=5x
易證:AEG≌△CFH,
AGCH,
EHECCH=4x
yEGEC=8x2,
故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】《孫子算經》內容主要講數(shù)學的用途,淺顯易懂,其中有許多有趣的數(shù)學題,如“河邊洗碗”.原文:今有婦人河上蕩桮.津吏問曰:“桮何以多?“婦人曰:“家有客.”津吏曰:“客幾何?”婦人日:“二人共飯,三人共羹,四人共肉,凡用桮六十五.不知客幾何?“譯文:有一名婦女在河邊洗刷一大摞碗.一個津吏問她:“怎么刷這么多碗呢?“她回答:“家里來客人了.“津吏又問:“家里來了多少客人?”婦女答道:“2個人給一碗飯,3個人給一碗湯,4個人給一碗肉,一共要用65只碗,來了多少客人?”答:共有_____人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【題目】如圖①,一次函數(shù) y x - 2 的圖像交 x 軸于點 A,交 y 軸于點 B,二次函數(shù) y x2 bx c的圖像經過 A、B 兩點,與 x 軸交于另一點 C

(1)求二次函數(shù)的關系式及點 C 的坐標;

(2)如圖②,若點 P 是直線 AB 上方的拋物線上一點,過點 P PDx 軸交 AB 于點 DPEy 軸交 AB 于點 E,求 PDPE 的最大值;

(3)如圖③,若點 M 在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點 M的坐標.

① ②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2+2ax-3x軸交于A、B(10)兩點(A在點B的左側),與y軸交于點C,將拋物線沿y軸平移m(m0)個單位,當平移后的拋物線與線段OA有且只有一個交點時,則m的取值范圍是_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市公交總公司為節(jié)約資源同時惠及民生,擬對一些乘客數(shù)量較少的路線換成中巴車.該公司計劃購買臺中巴車,現(xiàn)有甲、乙兩種型號,已知購買一臺甲型車比購買一臺乙型車少萬元,購買臺甲型車比購買臺乙型車多萬元.

1)問購買一臺甲型車和一臺乙型車分別需要多少萬元?

2)經了解,每臺甲型車每年節(jié)省費用萬元,每臺乙型車每年節(jié)省費用萬元,若要使購買的這批中巴車每年至少能節(jié)省萬,則購買甲型車至少多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在中,,,點的中點.

1)如圖①,若點分別為上的點,且,試探究的數(shù)量關系;并說明四邊形的面積是定值嗎?若是,請求出;若不是,請說明理由.

2)若點分別為延長線上的點,且,那么嗎?請利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,以BC為直徑的⊙OAC于點D,過點D作⊙O的切線交AB于點M,交CB延長線于點N,連接OM,OC1

1)求證:AMMD;

2)填空:

①若DN,則△ABC的面積為   ;

②當四邊形COMD為平行四邊形時,∠C的度數(shù)為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=(x0)與正比例函數(shù)y=x(x0)的圖象,點A(1,4),點A'(4,b)與點B'均在反比例函數(shù)的圖象上,點B在直線y=x上,四邊形AA'B'B是平行四邊形,則B點的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的中,,且上一點.今打算在上找一點,在上找一點,使得全等,以下是甲、乙兩人的作法:

(甲)連接,作的中垂線分別交點、點,則、兩點即為所求

(乙)過作與平行的直線交點,過作與平行的直線交點,則、兩點即為所求

對于甲、乙兩人的作法,下列判斷何者正確?( 。

A. 兩人皆正確B. 兩人皆錯誤

C. 甲正確,乙錯誤D. 甲錯誤,乙正確

查看答案和解析>>

同步練習冊答案