【題目】如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經(jīng)過反彈后,球剛好彈到D點位置.

1)求證:△BEF∽△CDF;

2)求CF的長.

【答案】1)證明:如圖,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°

∴△BEF∽△CDF;

2)解:由(1)知,△BEF∽△CDF

,即,

解得:CF=169

即:CF的長度是169cm

【解析】試題分析:(1)利用兩角法證得這兩個三角形相似;

2)由(1)中相似三角形的對應邊成比例來求線段CF的長度.

試題解析:(1)如圖,在矩形ABCD中:∠DFC=∠EFB∠EBF=∠FCD=90°,

∴△BEF∽△CDF;

2由(1)知,△BEF∽△CDF

解得:CF=169

即:CF的長度是169cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面內,正方形ABCD與正方形CEFH如圖放置,連接DE,BH,兩線交于M,求證:

(1)BHDE;

(2)BHDE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.

(1)求反比例函數(shù)和一次函數(shù)的表達式;

(2)求△AOB的面積;

(3)若D(x,0)是x軸上原點左側的一點,且滿足kxb<0,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家規(guī)定個人發(fā)表文章、出版圖書獲得稿費的納稅計算方法是:(l)稿費不高于800元的不納稅;(2)稿費高于800元又不高于4000元的,減除其中的800元,其余部分按20%納稅:(3)稿費高于4000元,減除稿酬的20%,其余部分按20%納稅.今知丁老師獲得一筆稿費,并繳納個人所得稅600元,問:丁老師的這筆稿費有多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平行四邊形ABCD,過點AAEBC垂足為E,連接DEF為線段DE上一點,AFE=∠B

(1)求證ADF∽△DEC;

(2)若AB=8,AD=,AF=AE的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC為等邊三角形,PBC上一點,QAC上一點,AQ=PQPR=PSPR⊥ABR,PS⊥ACS則對下面四個結論判斷正確的是(

①點P在∠BAC的平分線上, ②AS=AR③QP∥AR, ④△BRP≌△QSP.

A. 全部正確; B. 僅①和②正確; C. 僅②③正確; D. 僅①和③正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖像經(jīng)過點(-1.-5),且與正比例函數(shù)y=x的圖象相交于點(2,m).

1)求m的值;

2)求一次函數(shù)y=kx+b的解析式;

3)求這兩個函數(shù)圖像與x軸所圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉淇同學用配方法推導一元二次方程ax2+bx+c=0(a≠0)的求根公式時,對于b2﹣4ac>0的情況,她是這樣做的:

由于a≠0,方程ax2+bx+c=0變形為:

x2+x=﹣,…第一步

x2+x+(2=﹣+(2,…第二步

(x+2=,…第三步

x+=(b2﹣4ac>0),…第四步

x=,…第五步

嘉淇的解法從第  步開始出現(xiàn)錯誤;事實上,當b2﹣4ac>0時,方程ax2+bx+c=0(a≠O)的求根公式是  

用配方法解方程:x2﹣2x﹣24=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班學生參加公民道德知識競賽,將競賽所取得的成績(得分取整數(shù))進行整理后分成5組,并繪制成頻率分布直方圖,如下圖所示,請結合直方圖提供的信息,回答下列問

(1)該班共有多少名學生?

(2)60.5~70.5這一分數(shù)段的頻數(shù)、頻率分別是多少?

(3)根據(jù)統(tǒng)計圖,提出一個問,并回答你所提出的問?

查看答案和解析>>

同步練習冊答案