【題目】先化簡(jiǎn),再求代數(shù)式的值: ,其中m1

【答案】(1)

【解析】先進(jìn)行分式的混合運(yùn)算,再代入求值即可.

解:原式=,

,

;

當(dāng)m 1時(shí),原式==-

型】解答
結(jié)束】
25

【題目】如圖,在△ABC中,DBC邊的中點(diǎn),過(guò)D點(diǎn)分別作DE∥ABAC于點(diǎn)E,DF∥ACAB于點(diǎn)F

求證:BF=DE

【答案】證明見(jiàn)解析

【解析】試題分析:根據(jù)兩組對(duì)邊分別平行的四邊形為平行四邊形可判定四邊形AFDE是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得DE=AF,再由DBC邊的中點(diǎn),DFAC可得BF=AF即可得BF=DE

試題解析:

DEABDFAC,

DEAFDFAE,

∴四邊形AFDE是平行四邊形,

DE=AF

DBC邊的中點(diǎn),

BD=DC,DFAC

BF=AF,

BF=DE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在8×8的網(wǎng)絡(luò)中,ABC是格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)),若點(diǎn)A坐標(biāo)為(-1,3),按要求回答下列問(wèn)題:

(1)建立符合條件的平面直角坐標(biāo)系,并寫出點(diǎn)B和點(diǎn)C的坐標(biāo);

(2)將ABC先向下平移2個(gè)單位長(zhǎng)度,在向右平移3個(gè)單位長(zhǎng)度,得到DEF,請(qǐng)?jiān)趫D中畫(huà)出DEF,并求出線段AC在平移過(guò)程中掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A、BC在數(shù)軸上對(duì)應(yīng)的數(shù)分別為1、3、5點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)是﹣2,點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為P1點(diǎn)P1關(guān)于點(diǎn)B的對(duì)稱點(diǎn)為P2,點(diǎn)P2關(guān)于點(diǎn)C的對(duì)稱點(diǎn)為P3點(diǎn)P3關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為P4,,P1P2016的長(zhǎng)度為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列從左邊到右邊的變形,因式分解正確的是(

A. 2a2﹣2=2(a+1)(a﹣1) B. (a+3)(a﹣3)=a2﹣9

C. ﹣ab2+2ab﹣3b=﹣b(ab﹣2a﹣3) D. x2﹣2x﹣3=x(x﹣2)﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若多項(xiàng)式a2+ka+1是一個(gè)完全平方式,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】代數(shù)式2x3y2+3x2y5﹣12是項(xiàng)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:∠C=∠DOD=OC.求證:DE=CE

【答案】證明見(jiàn)解析

【解析】試題分析:利用ASA證明△OBC≌△OAD,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得OA=OB,再由OD=OC,即可得AC=BD根據(jù)AAS證明△ACE≌△BDE,再由全等三角形的對(duì)應(yīng)邊相等即可得結(jié)論.

試題解析:

在△OBC和△OAD中,

,

∴△OBC≌△OADASA),

OA=OB,

OD=OC,

OD﹣OB=OC﹣OA,即AC=BD,

在△ACE和△BDE中,

,

∴△ACE≌△BDEAAS),

DE=CE

型】解答
結(jié)束】
27

【題目】如圖,以等腰直角三角形ABC的斜邊AB為邊向內(nèi)作等邊△ABD,連接DC,以DC為邊,作等邊△DCE,點(diǎn)B、ECD的同側(cè).

1)求∠BCE的大;

2)求證:BE=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EF分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。

1)求證:OE=OF;

2)若BC=,求AB的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像分別交y軸、x軸交于點(diǎn)A、B,點(diǎn)P從點(diǎn)B出發(fā),沿射線BA以每秒1個(gè)單位的速度出發(fā),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.

1)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,若某一時(shí)刻,OPA的面積為6,求此時(shí)P的坐標(biāo);

2)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),AOP為等腰三角形?(只需寫出t的值,無(wú)需解答過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案