【題目】如圖所示,E,F,G,H分別是四邊形ABCD的邊AB,BC,CD,AD的中點.
(1)當四邊形ABCD是矩形時,四邊形EFGH是_________,請說明理由;
(2)當四邊形ABCD滿足什么條件時,四邊形EFGH為正方形?并說明理由.
【答案】(1)菱形,理由見解析;(2)當四邊形ABCD滿足AC=BD且AC⊥BD時,四邊形EFGH為正方形.理由見解析.
【解析】(1)利用三角形中位線定理“三角形的中位線等于第三邊的一半”,根據(jù)菱形的判定,矩形的性質,求解即可,
(2)首先利用菱形的性質得出平行四邊形ABCD是菱形,再利用正方形的性質與判定得出即可.
解:(1)理由:∵四邊形ABCD是矩形,∴AC=BD.
由題意,得EF=AC,EH=BD,GH=AC,GF=BD,
∴EF=EH=GH=GF.
∴四邊形EFGH是菱形.
(2)當四邊形ABCD滿足AC=BD且AC⊥BD時,四邊形EFGH為正方形.理由:
∵E,F分別是四邊形ABCD的邊AB,BC的中點,
∴EF∥AC,EF=AC.
同理:EH∥BD,EH=BD,GF=BD,GH=AC.
又∵AC=BD,∴EF=EH=GH=GF.
∴四邊形EFGH是菱形.
∵AC⊥BD,∴EF⊥EH.
∴四邊形EFGH是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是正方形ABCD的對角線AC上的一個動點(不與A、C重合),作EF⊥AC交邊BC于點F,聯(lián)結AF、BE交于點G.
(1)求證:△CAF∽△CBE;
(2)若AE:EC=2:1,求tan∠BEF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學興趣小組開展了一次課外活動,過程如下:
如圖①,正方形ABCD中,AB=6,將三角板放在正方形ABCD上,使三角板的直角頂點與D點重合,三角板的一邊交AB于點P,另一邊交BC的延長線于點Q.
(1)求證:AP=CQ;
(2)如圖②,小明在圖①的基礎上作∠PDQ的平分線DE交BC于點E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關系,請猜測他的結論并證明.
(3)如圖③,固定三角板直角頂點在D點不動,轉動三角板,使三角板的一邊交AB的延長線于點P,另一邊交BC的延長線于點Q,仍作∠PDQ的平分線DE交BC的延長線于點E,連接PE,若AB:AP=3:4,請幫小明算出△ DEQ的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小華和小容都想?yún)⒓訉W校組織的數(shù)學興趣小組,根據(jù)學校分配的名額,他們兩人只能有1人參加.數(shù)學老師想出了一個主意:如圖,給他們六張卡片,每張卡片上都有一些數(shù),將化簡后的數(shù)在數(shù)軸上表示出來,再用“<”連接起來,誰先按照要求做對,誰就參加興趣小組,你也一起來試一試吧!
-(-2) (-1)3 -|-3| 0的相反數(shù)
① 、凇 、邸 、
-0.4的倒數(shù) 比-1大2.5的數(shù)
⑤ 、
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,CF=AE,連接AF,BF.
(1)求證:四邊形BFDE是矩形
(2)若CF=6,BF=8,DF=10,求證:AF是∠DAB的平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十·一”黃金周期間,我市某景點旅游區(qū)在7天假期中每天旅游的人數(shù)變化如下表:
(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù)).(單位:萬人)
日 期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人數(shù)變化 | + 1.2 | + 1.2 | + 0.4 | – 0.2 | – 0.8 | + 0.2 | – 1.4 |
若9月30日的旅游人數(shù)記為3萬人,則
(1)請求出10月5日的旅游人數(shù);
(2)請判斷7天內旅游人數(shù)最多的是哪一天?最少的是哪一天?它們相差多少萬人?
(3)若該景點門票為每人20元,請算出該景點黃金周期間的收入共多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在ABCD中,點E在AD上,連接BE,DF∥BE交BC于點F,AF與BE交于點M,CE與DF交于點N,AF,BE分別平分∠BAD,∠ABC;CE,DF分別平分∠BCD,∠ADC,則四邊形MFNE是( 。
A. 菱形 B. 矩形 C. 平行四邊形 D. 正方形
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com