【題目】如圖,在△ABC中,AB=AC,∠A=30°,以AB為直徑的⊙O交BC于點(diǎn)D,交AC于點(diǎn)E,連結(jié)DE,過點(diǎn)B作BP平行于DE,交⊙O于點(diǎn)P,連結(jié)EP、CP、OP.
(1)BD=DC嗎?說明理由;
(2)求∠BOP的度數(shù);
(3)求證:CP是⊙O的切線.
【答案】(1)BD=DC;理由見解析;(2)90°;(3)證明見解析;
【解析】
(1)連接AD,由圓周角定理可知∠ADB=90°,再由AB=AC可知△ABC是等腰三角形,故BD=DC;
(2)由于AD是等腰三角形ABC底邊上的中線,所以∠BAD=∠CAD,故=,進(jìn)而可得出BD=DE,故BD=DE=DC,所以∠DEC=∠DCE,△ABC中由等腰三角形的性質(zhì)可得出∠ABC=75°,故∠DEC=75°由三角形內(nèi)角和定理得出∠EDC的度數(shù),再根據(jù)BP∥DE可知∠PBC=∠EDC=30°,進(jìn)而得出∠ABP的度數(shù),再由OB=OP,可知∠OBP=∠OPB,由三角形內(nèi)角和定理即可得出∠BOP=90°;
(3)設(shè)OP交AC于點(diǎn)G,由∠BOP=90°可知∠AOG=90°在Rt△AOG中,由∠OAG=30°,可知=,由于==,所以=,=,再根據(jù)∠AGO=∠CGP可得出△AOG∽△CPG,由相似三角形形的性質(zhì)可知∠GPC=∠AOG=90°,故可得出CP是 ⊙O的切線.
解:(1)BD=DC.理由如下:連接AD,
∵AB是直徑,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=DC;
(2)∵AD是等腰△ABC底邊上的中線,
∴∠BAD=∠CAD,
∴=,
∴BD=DE.
∴BD=DE=DC,
∴∠DEC=∠DCE,
△ABC中,AB=AC,∠A=30°,
∴∠DCE=∠ABC=(180°﹣30°)=75°,
∴∠DEC=75°,
∴∠EDC=180°﹣75°﹣75°=30°,
∵BP∥DE,
∴∠PBC=∠EDC=30°,
∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°,
∵OB=OP,
∴∠OBP=∠OPB=45°,
∴∠BOP=90°;
(3)設(shè)OP交AC于點(diǎn)G,如圖,則∠AOG=∠BOP=90°,
在Rt△AOG中,∠OAG=30°,
∴=,
又∵==,
∴=,
∴=,
又∵∠AGO=∠CGP,
∴△AOG∽△CPG,
∴∠GPC=∠AOG=90°,
∴OP⊥PC,
∴CP是⊙O的切線;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)計(jì)劃為新生配備如圖1所示的折疊椅.圖2中的正方形ACBD是折疊椅撐開后的側(cè)面示意圖,其中椅腿AB和CD的長相等,O是它們的中點(diǎn).若正方形ACBD的面積為[9(2x-3y)2+12(2x-3y) (x+4y) +4(x+4y)2](米2)(x>y),你能求出這種折疊椅張開后的高度嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,.動(dòng)點(diǎn)、分別從點(diǎn)、點(diǎn)同時(shí)出發(fā),相向而行,速度都為.以為一邊向上作正方形,過點(diǎn)作,交于點(diǎn).設(shè)運(yùn)動(dòng)時(shí)間為,單位:,正方形和梯形重合部分的面積為.
當(dāng)時(shí),點(diǎn)與點(diǎn)重合.
當(dāng)時(shí),點(diǎn)在上.
當(dāng)點(diǎn)在,兩點(diǎn)之間(不包括,兩點(diǎn))時(shí),求與之間的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解答問題.
(閱讀)例題:求多項(xiàng)式m2 + 2mn+2n2-6n+13的最小值.
解;m2+2mn+2n2-6n+ 13= (m2 +2mn+n2)+ (n2-6n+9)+4= (m+n)2+(n-3)2+4,
∵(m+n)20, (n-3)20
∴多項(xiàng)式m2+2mn+2n2-6n+ 13的最小值是4.
(解答問題)
(1)請寫出例題解答過程中因式分解運(yùn)用的公式是
(2)己知a、b、c是△ABC的三邊,且滿足a2+b2=l0a+8b-41,求第三邊c的取值范圍;
(3)求多項(xiàng)式-2x2+4xy-3y2 -3y2-6y+7 的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙D的直徑,AD切⊙D于點(diǎn)A,EC=CB.則下列結(jié)論:①BA⊥DA;②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正確的個(gè)數(shù)有( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CD切⊙O于點(diǎn)C,與BA的延長線交于點(diǎn)D,OE⊥AB交⊙O于點(diǎn)E,連接CA、CE、CB,CE交AB于點(diǎn)G,過點(diǎn)A作AF⊥CE于點(diǎn)F,延長AF交BC于點(diǎn)P.
(Ⅰ)求∠CPA的度數(shù);
(Ⅱ)連接OF,若AC=,∠D=30°,求線段OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點(diǎn),且OC∥BD,AD與BC,OC分別相交于點(diǎn)E,F(xiàn),則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤△CEF≌△BED.其中一定成立的結(jié)論是_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=AC=20 cm.動(dòng)點(diǎn)P,Q分別從A,B兩點(diǎn)同時(shí)出發(fā),沿三角形的邊勻速運(yùn)動(dòng).已知點(diǎn)P,點(diǎn)Q的速度都是2 cm/s,當(dāng)點(diǎn)P第一次到達(dá)B點(diǎn)時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)∠A=______度;
(2)當(dāng)0<t<10,且△APQ為直角三角形時(shí),求t的值;
(3)當(dāng)△APQ為等邊三角形時(shí),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提倡綠色出行,某公司在我區(qū)、兩個(gè)街區(qū)分別投放了一批“共享汽車”,“共享汽車”有甲、乙不同款型.
(1)該公司在我區(qū)街區(qū)早期試點(diǎn)時(shí)共投放甲、乙兩種型號的“共享汽車”各20輛,投放成本共計(jì)劃110萬,其中甲型汽車的成本單價(jià)比乙型汽車少0.5萬元,求甲、乙兩型“共享汽車”的單價(jià)各是多少?
(2)該公司采取了如下的投放方式: 街區(qū)每2000人投放輛“共享汽車”,街區(qū)每2000人投放輛“共享汽車”,按照這種設(shè)放方式,街區(qū)共投放150輛,街區(qū)共投放120輛,如果兩個(gè)街區(qū)共有6萬人,試求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com