【題目】如圖,在菱形ABCD中,點EBC邊的中點,動點MCD邊上運動,以EM為折痕將△CEM折疊得到△PEM,連接PA,若AB=4,∠BAD=60°,則PA的最小值是_____

【答案】22

【解析】

A,P,E在同一直線上時,AP最短,過點EEFAB于點F,依據(jù)BEBC2,∠EBF60°,即可得到AE的長度,進而得出PA的最小值.

解:根據(jù)折疊的性質(zhì)得,EP=CE=BC=2,

故點P在以E為圓心,EP為半徑的半圓上,

AP+EP≥AE

∴當A,PE在同一直線上時,AP最短,

如圖,過點EEFAB于點F

∵在邊長為4的菱形ABCD中,∠BAD=60°EBC的中點,

BE=BC=2,∠EBF=60°,

∴∠BEF=30°,

BF=BE=1,

AF=5,

PA的最小值=AEPE=

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種高檔蔬菜莼菜,其進價為16/kg.經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的日銷售量y(kg)是售價x(/kg)的一次函數(shù),其售價、日銷售量對應值如表:

售價(/)

20

30

40

日銷售量()

80

60

40

(1)關于的函數(shù)解析式(不要求寫出自變量的取值范圍)

(2)為多少時,當天的銷售利潤 ()最大?最大利潤為多少?

(3)由于產(chǎn)量日漸減少,該商品進價提高了/,物價部門規(guī)定該商品售價不得超過36/,該商店在今后的銷售中,日銷售量與售價仍然滿足(1)中的函數(shù)關系.若日銷售最大利潤是864元,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,并用相關的思想方法解決問題.

例:若多項式分解因式的結果中有因式,求實數(shù)的值.

解:設

,則

是方程的解

所以,即,所以

解決問題:(1)若多項式分解因式的結果中有因式,求實數(shù)的值;

2)若多項式分解因式的結果中有因式

①求出的值;

②直接寫出方程的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線a≠0)與y軸交與點C03),與x軸交于A、B兩點,點B坐標為(4,0),拋物線的對稱軸方程為x=1

1)求拋物線的解析式;

2)點MA點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點NB點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,設△MBN的面積為S,點M運動時間為t,試求St的函數(shù)關系,并求S的最大值;

3)在點M運動過程中,是否存在某一時刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線C1yx22x與拋物線C2yax2+bx開口大小相同、方向相反,它們相交于O,C兩點,且分別與x軸的正半軸交于點B,點A,OA2OB

1)求拋物線C2的解析式;

2)在拋物線C2的對稱軸上是否存在點P,使PA+PC的值最。咳舸嬖,求出點P的坐標,若不存在,說明理由;

3M是直線OC上方拋物線C2上的一個動點,連接MOMC,M運動到什么位置時,MOC面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】郴州市正在創(chuàng)建全國文明城市,某校擬舉辦創(chuàng)文知識搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A20件,B15件,共需380元;如果購買A15件,B10件,共需280元.

(1)A、B兩種獎品每件各多少元?

(2)現(xiàn)要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,以直徑作,交于點恰有,連接

1)如圖1,求證:

2)如圖2,連接分別交,于點連接試探究之間的數(shù)量關系,并說明理由;

3)在(2)的基礎上,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們曾學過定理在直角三角形中,如果一個銳角等于,那么它所對的直角邊等于斜邊的一半,其逆命題也是成立的,即在直角三角形中,如果一直角邊等于斜邊的一半,那么該直角邊所對的角為”.如圖,在中,,如果,那么.

請你根據(jù)上述命題,解決下面的問題:

1)如圖1,為格點,以為圓心,長為半徑畫弧交直線于點,則______

2)如圖2,、為格點,按要求在網(wǎng)格中作圖(保留作圖痕跡)。

,使點在直線上,并且,.

3)如圖3,在中,,內(nèi)一點,,,且.

①求的度數(shù);

②求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,曲線是拋物線的一部分(其中是拋物線與軸的交點,是頂點),曲線是雙曲線的一部分.曲線組成圖形.由點開始不斷重復圖形形成一組波浪線.若點,在該波浪線上,則的最大值為(

A.5B.6C.2020D.2021

查看答案和解析>>

同步練習冊答案