【題目】如圖所示,兩個(gè)建筑物ABCD的水平距離為30m,張明同學(xué)住在建筑物AB內(nèi)10P室,他觀測(cè)建筑物CD樓的頂部D處的仰角為30°,測(cè)得底部C處的俯角為45°,求建筑物CD的高度.(1.73,結(jié)果保留整數(shù).)

【答案】建筑物CD的高約為47m.

【解析】試題分析:過點(diǎn)PPECDE,則四邊形BCEP是矩形,可得PE=BC=30m.在RtPDE中,由∠DPE=30°,PE=30m可計(jì)算出DE的長(zhǎng)度為10m,RtPEC中,由∠EPC=45°,PE=30m可計(jì)算出CE的長(zhǎng)度為30m,再對(duì)DE、CE求和即可.

試題解析:

解:過點(diǎn)PPECDE,則四邊形BCEP是矩形,

PE=BC=30m,

RtPDE中,∵∠DPE=30°,PE=30 m

DE=PE×tan30°=30×=10 m

RtPEC中,∵∠EPC=45°,PE=30 m,

CE=PE×tan45°=30×1=30 m,

CD=DE+CE=30+10=30+17.3≈47(m).

答:建筑物CD的高約為47m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人分別從兩地相向而行,他們距地的距離與時(shí)間的關(guān)系如圖所示,下列說法錯(cuò)誤的是( )

A.甲的速度是B.甲出發(fā)4.5小時(shí)后與乙相遇

C.乙比甲晚出發(fā)2小時(shí)D.乙的速度是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DBC邊上的一點(diǎn),∠B=50°,∠BAD=30°,將△ABD沿AD折疊得到△AED,AEBC交于點(diǎn)F.

1)填空:∠ADC= 度;

2)當(dāng)∠C=20°時(shí),判斷DEAC的位置關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某品牌轎車以勻速行駛的耗油情況,進(jìn)行了試驗(yàn):該轎車油箱加滿后,以的速度勻速行駛,數(shù)據(jù)記錄如下表:

轎車行駛的路程(千米)

0

100

200

300

油箱剩余油量(升)

50

41

32

23

1)上表反映了哪兩個(gè)變量之間的關(guān)系?自變量、因變量各是什么?

2)油箱剩余油量(升)與轎車行駛的路程(千米)之間的關(guān)系式是什么?

3)若小明將油箱加滿后,駕駛該轎車以的速度勻速?gòu)?/span>地駛往地,到達(dá)地時(shí)油箱剩余油量為5升,求兩地之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生課外閱讀的喜好,某校從八年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查要求每人只選取一種喜歡的書籍,如果沒有喜歡的書籍,則作其它類統(tǒng)計(jì)。圖(1)與圖(2)是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖。以下結(jié)論不正確的是( )

A. 由這兩個(gè)統(tǒng)計(jì)圖可知喜歡科普常識(shí)的學(xué)生有90人.

B. 若該年級(jí)共有1200名學(xué)生,則由這兩個(gè)統(tǒng)計(jì)圖可估計(jì)喜愛科普常識(shí)的學(xué)生約有360個(gè).

C. 由這兩個(gè)統(tǒng)計(jì)圖不能確定喜歡小說的人數(shù).

D. 在扇形統(tǒng)計(jì)圖中,漫畫所在扇形的圓心角為72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A'B'C'是由ABC經(jīng)過平移得到的,它們的頂點(diǎn)在平面直角坐標(biāo)系中的坐標(biāo)如下表所示:

(1)觀察表中各對(duì)應(yīng)點(diǎn)坐標(biāo)的變化,并填空:

a= , b= ,c= ;

(2)在平面直角坐標(biāo)系中畫出ABC及平移后的A'B'C';(3)A'B'C'的面積是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標(biāo)上1、2、3,將這兩組卡片分別放入兩個(gè)盒子中攪勻,再?gòu)闹须S機(jī)抽取一張.

1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;

2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C表示某旅游景區(qū)三個(gè)纜車站的位置,線段AB,BC表示連接纜車站的鋼纜,已知A,B,C三點(diǎn)在同一鉛直平面內(nèi),它們的海拔高度AA′,BB′,CC′分別為110米,310米,710米,鋼纜AB的坡度i1=1∶2,鋼纜BC的坡度i2=1∶1,景區(qū)因改造纜車線路,需要從A到C直線架設(shè)一條鋼纜,那么鋼纜AC的長(zhǎng)度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)

【答案】鋼纜AC的長(zhǎng)度為1 000米.

【解析】試題分析:過點(diǎn)AAE⊥CC′于點(diǎn)E,交BB′于點(diǎn)F,過點(diǎn)BBD⊥CC′于點(diǎn)D,分別求出AECE,利用勾股定理求解AC即可.

試題解析:過點(diǎn)AAE⊥CC′于點(diǎn)E,交BB′于點(diǎn)F,過點(diǎn)BBD⊥CC′于點(diǎn)D,

△AFB、△BDC、△AEC都是直角三角形,四邊形AA′B′FBB′C′DBFED都是矩形,

∴BF=BB′-B′F=BB′-AA′=310-110=200,

CD=CC′-C′D=CC′-BB′=710-310=400,

∵i1=12i2=11,

∴AF=2BF=400BD=CD=400,

∵EF=BD=400,DE=BF=200,

∴AE=AF+EF=800,CE=CD+DE=600,

RtAEC中,AC=(米).

答:鋼纜AC的長(zhǎng)度是1000米.

考點(diǎn):解直角三角形的應(yīng)用-坡度坡角問題.

型】解答
結(jié)束】
24

【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點(diǎn),AD垂直于過C點(diǎn)的切線,垂足為D,AB的延長(zhǎng)線交直線CD于點(diǎn)E.

(1)求證:AC平分∠DAB;

(2)若AB=4,B為OE的中點(diǎn),CF⊥AB,垂足為點(diǎn)F,求CF的長(zhǎng);

(3)如圖②,連接OD交AC于點(diǎn)G,若,求sinE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,為面向鄉(xiāng)鎮(zhèn)市場(chǎng),蘇寧電器分店決定用76000元購(gòu)進(jìn)室內(nèi)用、室外用節(jié)能燈,已知這兩種類型的節(jié)能燈進(jìn)價(jià)、售價(jià)如下:

價(jià)格

類型

進(jìn)價(jià)(元/盞)

售價(jià)(元/盞)

室內(nèi)用節(jié)能燈

40

58

室外用節(jié)能燈

50

70

(1)若該分店共購(gòu)進(jìn)節(jié)能燈1700盞,問購(gòu)進(jìn)的室內(nèi)用、室外用節(jié)能燈各多少盞?

(2)若該分店將進(jìn)貨全部售完后獲利要不少于32000元,問至少需要購(gòu)進(jìn)多少盞室內(nèi)用節(jié)能燈?

(3)掛職鍛煉的大學(xué)生村官王祥自酬了4650元在該分店購(gòu)買這兩種類型的節(jié)能燈若干盞,分發(fā)給村民使用,其中室內(nèi)用節(jié)能燈盞數(shù)不少于室內(nèi)用節(jié)能燈盞數(shù)的2倍,問王祥最多購(gòu)買室外用節(jié)能燈多少盞?

查看答案和解析>>

同步練習(xí)冊(cè)答案