Loading [MathJax]/jax/output/CommonHTML/jax.js
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗傜紒鈧笟鈧畷婊堫敇閻戝棙瀵岄梺闈涚墕濡鎱ㄨ缁辨帡鎮╅崘鑼紝闂佺粯渚楅崳锝嗘叏閳ь剟鏌曢崼婵囶棤闁告ɑ鎹囬弻鈩冨緞鐏炴垝娌繝銏㈡嚀濡繂鐣峰┑鍡╁悑闁糕剝鍔掔花濠氭⒑閸濆嫬鈧悂鎮樺┑瀣垫晜妞ゆ劑鍊楃壕濂稿级閸稑濡界€规洖鐬奸埀顒冾潐濞叉ḿ鏁幒妤嬬稏婵犻潧顑愰弫鍕煢濡警妲峰瑙勬礋濮婃椽宕ㄦ繝鍕窗闂佺ǹ瀛╂繛濠囧箚鐏炶В鏋庨柟鎯ь嚟閸橀亶姊洪崫鍕偍闁告柨鐭傞幃姗€鎮╅悽鐢碉紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃缂侇噮鍨抽幑銏犫槈閵忕姷顓洪梺鍝勫暊閸嬫捇鏌涢妶鍛ч柡灞剧洴婵$兘顢欓悡搴樻嫽闂備浇妗ㄧ粈浣该洪銏犺摕闁哄浄绱曢悿鈧梺鍝勬川閸婎偊濡烽敂杞扮盎闂佹寧妫侀褍鈻嶅澶嬬厵妞ゆ梻鐡斿▓婊呪偓瑙勬礃椤ㄥ棗顕ラ崟顒傜瘈濞达絽澹婂Λ婊堟⒒閸屾艾鈧绮堟笟鈧獮澶愬灳鐡掍焦妞介弫鍐磼濮樻唻绱卞┑鐘灱閸╂牠宕濋弴銏犲強闁靛鏅滈悡鐔兼煙闁箑鏋涢柛鏂款儔閺屽秹鏌ㄧ€n亞浼岄梺璇″枛缂嶅﹪鐛笟鈧獮鎺楀箣濠垫劗鈧櫕绻濋悽闈涗粶闁瑰啿绻樺畷婵嗏枎閹惧疇鎽曢梺缁樻⒒閸樠呯矆閸曨垱鐓忛柛顐g箖椤ユ粍銇勮箛銉﹀
10.已知頂點為(-3,-6)的拋物線y=ax2+bx+c經(jīng)過點(-1,-4),則下列結(jié)論中錯誤的是( �。�
A.b2>4ac
B.關于x的一元二次方程ax2+bx+c=-4的兩根為-5和-1
C.ax2+bx+c≥-6
D.若點(-2,m),(-5,n)在拋物線上,則m>n

分析 A:求解析式并化成一般式,計算△=b2-4ac的值;
B:解方程ax2+bx+c=-4,即12(x+3)2-6=-4;
C:a=12>0,拋物線的最小值為-6,ax2+bx+c≥-6;
D:看橫坐標-2與-5離對稱軸x=-3的距離,則-5對應的n>m.

解答 解:設拋物線的解析式為y=a(x+3)2-6,將(-1.-4)代入得:
a(-1+3)2-6=-4,
a=12
∴y=12(x+3)2-6=12x2+3x32,
A:△=b2-4ac=32-4×12×32>0,所以b2>4ac,故選項A正確;
B:12(x+3)2-6=-4,
x1=-5,x2=-1,所以12(x+3)2-6=-4的兩根為-5和-1,故選項B正確;
C:拋物線頂點坐標為(-3,-6),即當x=-3時,y有最小值為-6,
所以ax2+bx+c≥-6,故選項C正確;
D:拋物線是軸對稱圖形,對稱軸是x=-3,且a=12>0,y有最小值為-6,
|-3-(-2)|=1,|-5-(-3)|=2,
所以若點(-2,m),(-5,n)在拋物線上,則m<n,
故選項D錯誤;
因為本題選擇錯誤的,故選D.

點評 本題綜合考查了二次函數(shù)的性質(zhì),屬于基礎題,且難度適中;考查了根的判別式、最值與頂點坐標的關系,及一元二次方程與二次函數(shù)的關系等幾方面的內(nèi)容.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:選擇題

20.某市乘出租車需付車費y(元)與行車里程x(千米)之間函數(shù)關系的圖象如圖所示,那么該市乘出租車超過3千米后,每千米的費用是(  )
A.0.71元B.2.3元C.1.75元D.1.4元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.如圖所示,直線AB、CD相交于點O,OE⊥AB,OB平分∠DOF,若∠EOC=110°,求∠BOF,∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.如圖,點O是直線FA上一點,OB,OD,OC,OE是射線,OE平分∠AOC,OD平分∠BOC.
(1)若∠AOE=15°,求∠FOC的度數(shù);
(2)若∠AOB=86°,求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

5.已知直線y=2x+b與坐標軸圍成的三角形的面積是4,則b的值是( �。�
A.4B.2C.±4D.±2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.如圖,已知AB∥CD,若∠C=40°,∠E=20°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.(1)如圖1,在平行四邊形ABCD中,將△BCD沿BD翻折,使點C落在點E處,BE和AD相交于點O.求證:OA=OE.
(2)如圖2,AB是⊙O的直徑,AC是⊙O的弦,過點B作⊙O的切線DE,與AC的延長線交于點D,作AE⊥AC交DE于點E.求證:∠BAD=∠E.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

19.下列說法正確的是( �。�
A.(3,2)和(2,3)表示同一個點B.點(3,0)在x軸的正半軸上
C.點(-2,4)在第四象限D.點(-3,1)到x軸的距離為3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

20.直線y=12x+b與函數(shù)y=x2+|2x2-1|的圖象有且只有三個交點,則b的值為12+24或1+24

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�