【題目】如圖,直線與直線、分別交于點(diǎn)、,與互補(bǔ).
(1)試判斷直線與直線的位置關(guān)系,并說(shuō)明理由;
(2)如圖,與的角平分線交于點(diǎn),與交于點(diǎn),點(diǎn)是上一點(diǎn),且,求證:;
(3)如圖,在(2)的條件下,連接,是上一點(diǎn)使,作平分,問(wèn)的大小是否發(fā)生變化?若不變,請(qǐng)求出求值;若變化,說(shuō)明理由.
【答案】(1)AB∥CD;(2)證明見(jiàn)解析;(3)角度不會(huì)發(fā)生改變,理由見(jiàn)解析.
【解析】
試題(1)利用對(duì)頂角相等、等量代換可以推知同旁?xún)?nèi)角∠AEF、∠CFE互補(bǔ),所以易證AB∥CD;
(2)利用(1)中平行線的性質(zhì)推知°;然后根據(jù)角平分線的性質(zhì)、三角形內(nèi)角和定理證得∠EPF=90°,即EG⊥PF,故結(jié)合已知條件GH⊥EG,易證PF∥GH;
(3)利用三角形外角定理、三角形內(nèi)角和定理求得∠4=90°-∠3=90°-2∠2;然后由鄰補(bǔ)角的定義、角平分線的定義推知∠QPK=∠EPK=45°+∠2;最后根據(jù)圖形中的角與角間的和差關(guān)系求得∠HPQ的大小不變,是定值45°.
試題解析:(1)如圖1,
∵∠1與∠2互補(bǔ),
∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE,
∴∠AEF+∠CFE=180°,
∴AB∥CD;
(2)如圖2,
由(1)知,AB∥CD,
∴∠BEF+∠EFD=180°.
又∵∠BEF與∠EFD的角平分線交于點(diǎn)P,
∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,
∴∠EPF=90°,即EG⊥PF.
∵GH⊥EG,
∴PF∥GH;
(3)∠HPQ的大小不發(fā)生變化,理由如下:
如圖3,
∵∠1=∠2,
∴∠3=2∠2.
又∵GH⊥EG,
∴∠4=90°-∠3=90°-2∠2.
∴∠EPK=180°-∠4=90°+2∠2.
∵PQ平分∠EPK,
∴∠QPK=∠EPK=45°+∠2.
∴∠HPQ=∠QPK-∠2=45°,
∴∠HPQ的大小不發(fā)生變化,一直是45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)學(xué)生的身體素質(zhì),教育行政部門(mén)規(guī)定學(xué)生每天參加戶外活動(dòng)的平均時(shí)間不少于1小時(shí).為了解學(xué)生參加戶外活動(dòng)的情況,對(duì)部分學(xué)生參加戶外活動(dòng)的時(shí)間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)補(bǔ)全頻數(shù)分布直方圖;
(2)表示戶外活動(dòng)時(shí)間1小時(shí)的扇形圓心角的度數(shù)是多少;
(3)本次調(diào)查學(xué)生參加戶外活動(dòng)時(shí)間的眾數(shù)是多少,中位數(shù)是多少;
(4)本次調(diào)查學(xué)生參加戶外活動(dòng)的平均時(shí)間是否符合要求?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有A、B兩種型號(hào)的客車(chē),它們的載客量、每天的租金如表所示:
A型號(hào)客車(chē) | B型號(hào)客車(chē) | |
載客量(人/輛) | 30 | 45 |
租金(元/輛) | 450 | 600 |
已知某中學(xué)計(jì)劃租用兩種型號(hào)的客車(chē)共10輛送七年級(jí)師生去某地參加社會(huì)實(shí)踐活動(dòng),已知該中學(xué)租車(chē)的總費(fèi)用不超過(guò)5600元.
(1)求最多能租用多少輛B型號(hào)客車(chē)?
(2)若七年級(jí)師生共有380人,請(qǐng)寫(xiě)出所有可能的租車(chē)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高飲水質(zhì)量,越來(lái)越多的居民開(kāi)始選購(gòu)家用凈水器.一商家抓住商機(jī),從廠家購(gòu)進(jìn)了A、B兩種型號(hào)家用凈水器共160臺(tái),A型號(hào)家用凈水器進(jìn)價(jià)是150元/臺(tái),B型號(hào)家用凈水器進(jìn)價(jià)是350元/臺(tái),購(gòu)進(jìn)兩種型號(hào)的家用凈水器共用去36000元.
(1)求A、B兩種型號(hào)家用凈水器各購(gòu)進(jìn)了多少臺(tái);
(2)為使每臺(tái)B型號(hào)家用凈水器的毛利潤(rùn)是A型號(hào)的2倍,且保證售完這160臺(tái)家用凈水器的毛利潤(rùn)不低于11000元,求每臺(tái)A型號(hào)家用凈水器的售價(jià)至少是多少元?(注:毛利潤(rùn)=售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年4月23日,第23個(gè)世界讀書(shū)日.為了推進(jìn)中華傳統(tǒng)文化教育,營(yíng)造濃郁的讀書(shū)氛圍,我區(qū)某學(xué)校舉辦了“讓讀書(shū)成為習(xí)慣,讓書(shū)香飄滿校園”主題活動(dòng),為此特為每個(gè)班級(jí)訂購(gòu)了一批新的圖書(shū).初二年級(jí)兩個(gè)班訂購(gòu)圖書(shū)情況如下表:
老舍文集(套) | 四大名著(套) | 總費(fèi)用(元) | |
初二(1)班 | 4 | 2 | 480 |
初二(2)班 | 2 | 3 | 520 |
(1)求老舍文集和四大名著每套各是多少元;
(2)學(xué)校準(zhǔn)備再購(gòu)買(mǎi)老舍文集和四大名著共10套,總費(fèi)用不超過(guò)700元,問(wèn)學(xué)校有哪幾種購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖①,長(zhǎng)方形ABCD中,E是邊AD上一點(diǎn),且AE=6cm,點(diǎn)P從B出發(fā),沿折線BE-ED-DC勻速運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C停止.P的運(yùn)動(dòng)速度為2cm/s,運(yùn)動(dòng)時(shí)間為t(s),△BPC的面積為y(cm2),y與t的函數(shù)關(guān)系圖象如圖②,則下列結(jié)論正確的有( 。
①a=7 ②AB=8cm ③b=10 ④當(dāng)t=10s時(shí),y=12cm2
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,Rt△ABC的三個(gè)頂點(diǎn)A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請(qǐng)畫(huà)出△A1B1C的圖形.
(2)平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),請(qǐng)畫(huà)出平移后對(duì)應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿著CB方向向點(diǎn)B以3cm/s的速度運(yùn)動(dòng).點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).
(1)經(jīng)過(guò)多長(zhǎng)時(shí)間,四邊形PQCD是平行四邊形?
(2)經(jīng)過(guò)多長(zhǎng)時(shí)間,四邊形PQBA是矩形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com