(2013•舟山)對(duì)于點(diǎn)A(x1,y1)、B(x2,y2),定義一種運(yùn)算:A⊕B=(x1+x2)+(y1+y2).例如,A(-5,4),B(2,-3),A⊕B=(-5+2)+(4-3)=-2.若互不重合的四點(diǎn)C,D,E,F(xiàn),滿(mǎn)足C⊕D=D⊕E=E⊕F=F⊕D,則C,D,E,F(xiàn)四點(diǎn)(  )
分析:如果設(shè)C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6),先根據(jù)新定義運(yùn)算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),則x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,則C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6)都在直線(xiàn)y=-x+k上.
解答:解:∵對(duì)于點(diǎn)A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),
如果設(shè)C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6),
那么C⊕D=(x3+x4)+(y3+y4),
D⊕E=(x4+x5)+(y4+y5),
E⊕F=(x5+x6)+(y5+y6),
F⊕D=(x4+x6)+(y4+y6),
又∵C⊕D=D⊕E=E⊕F=F⊕D,
∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),
∴x3+y3=x4+y4=x5+y5=x6+y6,
令x3+y3=x4+y4=x5+y5=x6+y6=k,
則C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6)都在直線(xiàn)y=-x+k上,
∴互不重合的四點(diǎn)C,D,E,F(xiàn)在同一條直線(xiàn)上.
故選A.
點(diǎn)評(píng):本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,以及學(xué)生的閱讀理解能力,有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•舟山)如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南京)對(duì)于兩個(gè)相似三角形,如果沿周界按對(duì)應(yīng)點(diǎn)順序環(huán)繞的方向相同,那么稱(chēng)這兩個(gè)三角形互為順相似;如果沿周界按對(duì)應(yīng)點(diǎn)順序環(huán)繞的方向相反,那么稱(chēng)這兩個(gè)三角形互為逆相似.例如,如圖①,△ABC∽△A′B′C′,且沿周界ABCA與A′B′C′A′環(huán)繞的方向相同,因此△ACB和△A′B′C′互為順相似;如圖②,△ABC∽△A′B′C′,且沿周界ABCA與A′B′C′A′環(huán)繞的方向相反,因此△ACB和△A′B′C′互為逆相似.

(1)根據(jù)圖Ⅰ,圖Ⅱ和圖Ⅲ滿(mǎn)足的條件.可得下列三對(duì)相似三角形:①△ADE與△ABC;②△GHO與△KFO;③△NQP與△NMQ;其中,互為順相似的是
①②
①②
;互為逆相似的是
.(填寫(xiě)所有符合要求的序號(hào)).

(2)如圖③,在銳角△ABC中,∠A<∠B<∠C,點(diǎn)P在△ABC的邊上(不與點(diǎn)A,B,C重合).過(guò)點(diǎn)P畫(huà)直線(xiàn)截△ABC,使截得的一個(gè)三角形與△ABC互為逆相似.請(qǐng)根據(jù)點(diǎn)P的不同位置,探索過(guò)點(diǎn)P的截線(xiàn)的情形,畫(huà)出圖形并說(shuō)明截線(xiàn)滿(mǎn)足的條件,不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•舟山)如圖,在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=
1
4
(x-m)2-
1
4
m2+m的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長(zhǎng)CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.
(1)當(dāng)m=2時(shí),求點(diǎn)B的坐標(biāo);
(2)求DE的長(zhǎng)?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過(guò)點(diǎn)D作AB的平行線(xiàn),與第(3)①題確定的函數(shù)圖象的另一個(gè)交點(diǎn)為P,當(dāng)m為何值時(shí),以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•舟山)在同一平面內(nèi),已知線(xiàn)段AO=2,⊙A的半徑為1,將⊙A繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到的像為⊙B,則⊙A與⊙B的位置關(guān)系為
外切
外切

查看答案和解析>>

同步練習(xí)冊(cè)答案